ASAP3: a batch means procedure for steady-state simulation analysis
暂无分享,去创建一个
Emily K. Lada | James R. Wilson | Natalie M. Steiger | David Goldsman | Christos Alexopoulos | Jeffrey A. Joines | James R. Wilson | D. Goldsman | N. M. Steiger | J. Joines | C. Alexopoulos | E. Lada
[1] Natalie M. Steiger,et al. Output analysis: ASAP2: an improved batch means procedure for simulation output analysis , 2002, WSC '02.
[2] J. Royston. The W Test for Normality , 1982 .
[3] Chris Chatfield,et al. Introduction to Statistical Time Series. , 1976 .
[4] James R. Wilson,et al. Validation of Simulation Analysis Methods for the Schruben-Margolin Correlation-Induction Strategy , 1992, Oper. Res..
[5] F. E. Satterthwaite. An approximate distribution of estimates of variance components. , 1946, Biometrics.
[6] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[7] George S. Fishman,et al. An Implementation of the Batch Means Method , 1997, INFORMS J. Comput..
[8] J. Royston. An Extension of Shapiro and Wilk's W Test for Normality to Large Samples , 1982 .
[9] J. P. Royston,et al. Algorithm AS 181: The W Test for Normality , 1982 .
[10] James R. Wilson,et al. Experimental performance evaluation of batch means procedures for simulation output analysis , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).
[11] Michael A. Malcolm,et al. Computer methods for mathematical computations , 1977 .
[12] James R. Wilson,et al. Improved batching for confidence interval construction in steady-state simulation , 1999, WSC '99.
[13] W. Fuller,et al. Introduction to Statistical Time Series (2nd ed.) , 1997 .
[14] David Goldsman,et al. To batch or not to batch? , 2004, TOMC.
[15] David Goldsman,et al. Spaced batch means , 1991, Oper. Res. Lett..
[16] George S. Fishman,et al. LABATCH.2 for Analyzing Sample Path Data , 1998 .
[17] Emily K. Lada,et al. Simulation output analysis: a wavelet-based spectral method for steady-state simulation analysis , 2003, WSC '03.
[18] S. R. Searle,et al. Matrix Algebra Useful for Statistics , 1982 .
[19] G. Box. Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification , 1954 .
[20] Satterthwaite Fe. An approximate distribution of estimates of variance components. , 1946 .
[21] Andrés Suárez-González,et al. New simulation output analysis techniques: a batch means procedure for mean value estimation of processes exhibiting long range dependence , 2002, WSC '02.
[22] H. Robbins,et al. ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN. , 1965 .
[23] Takeshi Amemiya,et al. The Effect of Aggregation on Prediction in the Autoregressive Model , 1972 .
[24] Barry L. Nelson,et al. Statistical Analysis of Simulation Results , 2007 .
[25] Christos Alexopoulos,et al. Output Data Analysis , 2007 .
[26] Abel M. Rodrigues. Matrix Algebra Useful for Statistics , 2007 .
[27] A. Afifi,et al. On Tests for Multivariate Normality , 1973 .
[28] F. E. Satterthwaite. Synthesis of variance , 1941 .
[29] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[30] Gwilym M. Jenkins,et al. Time series analysis, forecasting and control , 1971 .
[31] D. Goldsman,et al. ASAP2: an improved batch means procedure for simulation output analysis , 2002, Proceedings of the Winter Simulation Conference.
[32] G. M. Jenkins,et al. An angular transformation for the serial correlation coefficient , 1954 .
[33] B. L. Welch. On Linear Combinations of Several Variances , 1956 .
[34] Bruce W. Schmeiser,et al. Properties of batch means from stationary ARMA time series , 1987 .
[35] Emily K. Lada,et al. Performance of a Wavelet-Based Spectral Procedure for Steady-State Simulation Analysis , 2007, INFORMS J. Comput..
[36] M. Kendall,et al. Kendall's Advanced Theory of Statistics: Volume 1 Distribution Theory , 1987 .
[37] M SteigerNatalie,et al. ASAP3: a batch means procedure for steady-state simulation analysis , 2005 .
[38] P. Davies,et al. Kendall's Advanced Theory of Statistics. Volume 1. Distribution Theory , 1988 .
[39] Emily K. Lada,et al. Performance evaluation of a wavelet-based spectral method for steady-state simulation analysis , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..
[40] E.K. Lada,et al. A wavelet-based spectral method for steady-state simulation analysis , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..
[41] M. Fernandez-Veiga,et al. A batch means procedure for mean value estimation of processes exhibiting long range dependence , 2002, Proceedings of the Winter Simulation Conference.
[42] J. P. Secrétan,et al. Der Saccus endolymphaticus bei Entzündungsprozessen , 1944 .
[43] P. Bickel,et al. Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .
[44] A. Nádas. An Extension of a Theorem of Chow and Robbins on Sequential Confidence Intervals for the Mean , 1969 .
[45] Z. Cheridjian. Examen au point de vue osteocytaire d’une mâchoire inférieure atteinte de nécrose au Phosphore , 1948 .
[46] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .
[47] F. Grund. Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632. Prentice Hall, Inc., 1977. XI, 259 S , 1979 .
[48] James R. Wilson,et al. Convergence Properties of the Batch Means Method for Simulation Output Analysis , 2001, INFORMS J. Comput..