Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, and their application in aerosol-cloud interaction

Abstract. The evaluation of modelling diagnostics with appropriate observations is an important task that establishes the capabilities and reliability of models. In this study we compare aerosol and cloud properties obtained from three different climate models (ECHAM-HAM, ECHAM-HAM-SALSA, and NorESM) with satellite observations using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The simulator MODIS-COSP version 1.4 was implemented into the climate models to obtain MODIS-like cloud diagnostics, thus enabling model-to-model and model-to-satellite comparisons. Cloud droplet number concentrations (CDNCs) are derived identically from MODIS-COSP-simulated and MODIS-retrieved values of cloud optical depth and effective radius. For CDNC, the models capture the observed spatial distribution of higher values typically found near the coasts, downwind of the major continents, and lower values over the remote ocean and land areas. However, the COSP-simulated CDNC values are higher than those observed, whilst the direct model CDNC output is significantly lower than the MODIS-COSP diagnostics. NorESM produces large spatial biases for ice cloud properties and thick clouds over land. Despite having identical cloud modules, ECHAM-HAM and ECHAM-HAM-SALSA diverge in their representation of spatial and vertical distributions of clouds. From the spatial distributions of aerosol optical depth (AOD) and aerosol index (AI), we find that NorESM shows large biases for AOD over bright land surfaces, while discrepancies between ECHAM-HAM and ECHAM-HAM-SALSA can be observed mainly over oceans. Overall, the AIs from the different models are in good agreement globally, with higher negative biases in the Northern Hemisphere. We evaluate the aerosol–cloud interactions by computing the sensitivity parameter ACICDNC=dln⁡(CDNC)/dln⁡(AI) on a global scale. However, 1 year of data may be considered not enough to assess the similarity or dissimilarities of the models due to large temporal variability in cloud properties. This study shows how simulators facilitate the evaluation of cloud properties and expose model deficiencies, which are necessary steps to further improve the parameterisation in climate models.

[1]  J. Mülmenstädt,et al.  Bounding Global Aerosol Radiative Forcing of Climate Change , 2020, Reviews of geophysics.

[2]  T. Stanelle,et al.  The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity , 2019, Geoscientific Model Development.

[3]  J. Quaas,et al.  Is positive correlation between cloud droplet effective radius and aerosol optical depth over land due to retrieval artifacts or real physical processes? , 2019, Atmospheric Chemistry and Physics.

[4]  B. Stevens,et al.  Bounding aerosol radiative forcing of climate change , 2019 .

[5]  Duncan Watson-Parris,et al.  The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation , 2019, Geoscientific Model Development.

[6]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[7]  T. Stanelle,et al.  The global aerosol-climate model ECHAM6.3-HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing and climate sensitivity , 2019 .

[8]  G. de Leeuw,et al.  Satellite-based estimate of the variability of warm cloud properties associated with aerosol and meteorological conditions , 2018, Atmospheric Chemistry and Physics.

[9]  A. Kirkevåg,et al.  A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo , 2018, Geoscientific Model Development.

[10]  U. Lohmann,et al.  SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0 , 2018, Geoscientific Model Development.

[11]  Y. Wang,et al.  Contrasting effects on deep convective clouds by different types of aerosols , 2018, Nature Communications.

[12]  U. Lohmann,et al.  The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2 , 2018, Atmospheric Chemistry and Physics.

[13]  Hartwig Deneke,et al.  Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives , 2018, Reviews of geophysics.

[14]  A. Kirkevåg,et al.  A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo , 2018, Geoscientific Model Development.

[15]  Minghua Zhang,et al.  Height Dependency of Aerosol‐Cloud Interaction Regimes , 2018 .

[16]  M. Christensen,et al.  Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate , 2017 .

[17]  U. Lohmann,et al.  Unveiling aerosol–cloud interactions – Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data , 2017 .

[18]  U. Lohmann,et al.  The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0 , 2017 .

[19]  R. Bennartz,et al.  Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations , 2017 .

[20]  William B. Rossow,et al.  Tropical cloud and precipitation regimes as seen from near‐simultaneous TRMM, CloudSat, and CALIPSO observations and comparison with ISCCP , 2017 .

[21]  L. Oreopoulos,et al.  Using MODIS cloud regimes to sort diagnostic signals of aerosol‐cloud‐precipitation interactions , 2017, Journal of geophysical research. Atmospheres : JGR.

[22]  Huadong Guo,et al.  Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations , 2017 .

[23]  A. Bodas‐Salcedo,et al.  A multi-diagnostic approach to cloud evaluation , 2016 .

[24]  Steven Platnick,et al.  The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[25]  D. Ceburnis,et al.  Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland , 2016 .

[26]  Eric Guilyardi,et al.  Towards improved and more routine Earth system model evaluation in CMIP , 2016 .

[27]  G. Leeuw,et al.  Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations , 2016 .

[28]  N. Håkansson,et al.  Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland , 2016 .

[29]  C. Bretherton,et al.  Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system , 2016, Proceedings of the National Academy of Sciences.

[30]  A. Pier Siebesma,et al.  The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. , 2016 .

[31]  N. Bellouin,et al.  Constraining the aerosol influence on cloud fraction , 2016 .

[32]  Kenneth S. Carslaw,et al.  On the relationship between aerosol model uncertainty and radiative forcing uncertainty , 2016, Proceedings of the National Academy of Sciences.

[33]  S. Platnick,et al.  MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP. , 2015, Atmospheric measurement techniques.

[34]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[35]  Simon Read,et al.  ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP , 2015 .

[36]  J. Hudson,et al.  MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics , 2015, Journal of geophysical research. Atmospheres : JGR.

[37]  Andrew Gettelman,et al.  Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol–Cloud Interactions* , 2015 .

[38]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[39]  M. Kulmala,et al.  Aerosol indirect effects on continental low-level clouds over Sweden and Finland , 2014 .

[40]  Yong Wang,et al.  Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5 , 2014 .

[41]  Ling Jin,et al.  Evaluating clouds, aerosols, and their interactions in three global climate models using satellite simulators and observations , 2014 .

[42]  J. Seinfeld,et al.  Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds , 2014 .

[43]  P. Stier,et al.  Cloud fraction mediates the aerosol optical depth‐cloud top height relationship , 2014 .

[44]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[45]  W. Collins,et al.  Evaluation of climate models , 2013 .

[46]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[47]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[48]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[49]  Q. Min,et al.  Comparison of MODIS cloud microphysical properties with in-situ measurements over the Southeast Pacific , 2012 .

[50]  Philip Stier,et al.  Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data , 2012 .

[51]  T. Storelvmo Uncertainties in aerosol direct and indirect effects attributed to uncertainties in convective transport parameterizations , 2012 .

[52]  L. Emmons,et al.  The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions , 2012 .

[53]  Steven Platnick,et al.  Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations , 2012 .

[54]  Ivar A. Seierstad,et al.  The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections , 2012 .

[55]  K. Bower,et al.  Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REx , 2012 .

[56]  Michael Schulz,et al.  Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M , 2012 .

[57]  Robert Pincus,et al.  Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators , 2012 .

[58]  F. Bréon,et al.  Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations , 2012 .

[59]  Lorraine A. Remer,et al.  Aerosol-induced intensification of rain from the tropics to the mid-latitudes , 2012 .

[60]  Paquita Zuidema,et al.  Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS‐REx in situ measurements , 2011 .

[61]  Robert Pincus,et al.  Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models , 2011 .

[62]  G. Flato Earth system models: an overview , 2011 .

[63]  G. Feingold,et al.  The scale problem in quantifying aerosol indirect effects , 2011 .

[64]  John M. Haynes,et al.  COSP: Satellite simulation software for model assessment , 2011 .

[65]  J. Penner,et al.  Satellite methods underestimate indirect climate forcing by aerosols , 2011, Proceedings of the National Academy of Sciences.

[66]  Paul Poli,et al.  Atmospheric conservation properties in ERA‐Interim , 2011 .

[67]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[68]  A. Heidinger,et al.  Regional assessment of microphysical properties of marine boundary layer cloud using the PATMOS‐x dataset , 2010 .

[69]  Philip Stier,et al.  A critical look at spatial scale choices in satellite-based aerosol indirect effect studies , 2010 .

[70]  Robert C. Levy,et al.  Evaluating the assumptions of surface reflectance and aerosol type selection within the MODIS aerosol retrieval over land: The problem of dust type selection , 2010 .

[71]  S. Klein,et al.  Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data , 2010 .

[72]  J. Randerson,et al.  Technical Description of version 4.0 of the Community Land Model (CLM) , 2010 .

[73]  Johannes Quaas,et al.  Interpreting the cloud cover – aerosol optical depth relationship found in satellite data using a general circulation model , 2009 .

[74]  U. Lohmann,et al.  Sensitivity studies of different aerosol indirect effects in mixed-phase clouds , 2009 .

[75]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[76]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[77]  U. Lohmann,et al.  Cirrus cloud formation and ice supersaturated regions in a global climate model , 2008 .

[78]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[79]  S. Ghan,et al.  A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results , 2008 .

[80]  Ari Asmi,et al.  SALSA – a Sectional Aerosol module for Large Scale Applications , 2007 .

[81]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[82]  Robert F. Cahalan,et al.  3‐D aerosol‐cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields , 2007 .

[83]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[84]  D. Vaux,et al.  Error bars in experimental biology , 2007, The Journal of cell biology.

[85]  Yoram J. Kaufman,et al.  On the twilight zone between clouds and aerosols , 2007 .

[86]  Ralf Bennartz,et al.  Global assessment of marine boundary layer cloud droplet number concentration from satellite , 2007 .

[87]  Yoram J. Kaufman,et al.  Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models , 2006 .

[88]  Ulrike Lohmann,et al.  Sensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds , 2006 .

[89]  U. Lohmann,et al.  Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data , 2005 .

[90]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[91]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[92]  Johannes Quaas,et al.  Aerosol indirect effects in POLDER satellite data and the Laboratoire de Météorologie Dynamique–Zoom (LMDZ) general circulation model , 2004 .

[93]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[94]  Hanna Pawlowska,et al.  Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate , 2003 .

[95]  U. Lohmann,et al.  A Parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size , 2002 .

[96]  S. Ghan,et al.  A parameterization of aerosol activation 3. Sectional representation , 2002 .

[97]  Yoram J. Kaufman,et al.  Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach , 2001 .

[98]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[99]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[100]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[101]  H. Treut,et al.  A methodology study of the validation of clouds in GCMs using ISCCP satellite observations , 1996 .

[102]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[103]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[104]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .