Competitive Online Approximation of the Optimal Search Ratio

How efficiently can we search an unknown environment for a goal in an unknown position? How much would it help if the environment were known? We answer these questions for simple polygons and for undirected graphs by providing online search strategies that are as good as the best offline search algorithms, up to a constant factor. For other settings we prove that no such online algorithms exist. We introduce a natural measure which gives reasonable results and is more realistic than pure pessimistic competitive analysis.

[1]  Ricardo A. Baeza-Yates,et al.  Searching in the Plane , 1993, Inf. Comput..

[2]  Shmuel Gal,et al.  The theory of search games and rendezvous , 2002, International series in operations research and management science.

[3]  Tomio Hirata,et al.  An incremental algorithm for constructing shortest watchman routes , 1993, Int. J. Comput. Geom. Appl..

[4]  Rudolf Fleischer,et al.  Competitive Online Approximation of the Optimal Search Ratio , 2004, ESA.

[5]  Xiaotie Deng,et al.  How to learn an unknown environment. I: the rectilinear case , 1998, JACM.

[6]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[7]  XUEHOU TAN,et al.  Corrigendum to "An Incremental Algorithm for Constructing Shortest Watchman Routes" , 1999, Int. J. Comput. Geom. Appl..

[8]  Rolf Klein,et al.  An Optimal Competitive Strategy for Walking in Streets , 1999, STACS.

[9]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[10]  Piotr Berman,et al.  On-line Searching and Navigation , 1996, Online Algorithms.

[11]  Rudolf Fleischer,et al.  Optimal Robot Localization in Trees , 2001, Inf. Comput..

[12]  Bala Kalyanasundaram,et al.  Speed is as powerful as clairvoyance , 2000, JACM.

[13]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[14]  Sven Schuierer,et al.  An Optimal Strategy for Searching in Unknown Streets , 1999, STACS.

[15]  Rolf Klein,et al.  The Polygon Exploration Problem , 2001, SIAM J. Comput..

[16]  V. S. Anil Kumar,et al.  Optimal constrained graph exploration , 2001, SODA '01.

[17]  Elmar Langetepe,et al.  Lower bounds for the polygon exploration problem , 2004 .

[18]  Piotr Berman,et al.  Speed is More Powerful than Clairvoyance , 1998, Nord. J. Comput..

[19]  Xiaotie Deng,et al.  Non-Clairvoyant Multiprocessor Scheduling of Jobs with Changing Execution Characteristics , 2003, J. Sched..

[20]  Christos H. Papadimitriou,et al.  On the complexity of edge traversing , 1976, J. ACM.

[21]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[22]  Sven Schuierer,et al.  On-Line Searching in Simple Polygons , 1998, Sensor Based Intelligent Robots.

[23]  Mihalis Yannakakis,et al.  Searching a Fixed Graph , 1996, ICALP.

[24]  Susanne Albers,et al.  Exploring Unknown Environments with Obstacles , 1999, SODA '99.

[25]  Rudolf Fleischer,et al.  Exploring an Unknown Graph Efficiently , 2005, ESA.

[26]  C. Papadimitriou,et al.  Exploring an unknown graph , 1999 .

[27]  Moshe Dror,et al.  Touring a sequence of polygons , 2003, STOC '03.

[28]  Christos H. Papadimitriou,et al.  An approximation scheme for planar graph TSP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.