Fast-switching methane lidar transmitter based on a seeded optical parametric oscillator

We report on our development effort for a trace-gas-sensing lidar transmitter to be used in future Earth-orbiting satellites. Our lidar transmitter is based on an optical parametric oscillator (OPO), whose output wavelength is switched at a rate of 5 kHz across the target line. The OPO cavity length and the seed laser wavelengths are stabilized to molecular and atomic references. We demonstrated the concept of the OPO-based lidar transmitter at 1,651 nm, achieving ∼300-μJ output energy and <300-MHz linewidth, which are anticipated to be required for a future methane lidar spaceborne mission.

[1]  Kenji Numata,et al.  Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser. , 2012, Optics express.

[2]  Ilse Aben,et al.  Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth's atmosphere , 2007 .

[3]  G. Poberaj,et al.  Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere , 1998 .

[4]  James B. Abshire,et al.  Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar , 2013, Remote. Sens..

[5]  W. Mamakos,et al.  The Geoscience Laser Altimeter System (GLAS) Laser Transmitter , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  S. Houweling,et al.  Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis , 2008 .

[7]  C. Stephan,et al.  MERLIN: a space-based methane monitor , 2011, Optical Engineering + Applications.

[8]  J. Abshire,et al.  Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes , 2009 .

[9]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[10]  Jeffrey R. Chen,et al.  Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide. , 2011, Applied optics.

[11]  J. Abshire,et al.  Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar. , 2013, Applied optics.

[12]  Daisuke Sakaizawa,et al.  Development of a 1.6 microm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile. , 2009, Applied optics.

[13]  Gerhard Ehret,et al.  Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4 , 2011, Remote Sensing.

[14]  Haris Riris,et al.  Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm. , 2013, Applied optics.

[15]  Jianping Mao,et al.  Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. , 2004, Applied optics.

[16]  Richard T. White,et al.  Pulsed injection-seeded optical parametric oscillator with low frequency chirp for high-resolution spectroscopy. , 2003, Optics letters.

[17]  Steven X. Li,et al.  Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar. , 2012, Applied optics.

[18]  Tatsuya Yokota,et al.  Retrieval algorithm for CO 2 and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite , 2010 .

[19]  M. Wirth,et al.  Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide , 2008 .

[20]  Floyd Hovis,et al.  Space-based, multi-wavelength solid-state lasers for NASA's Cloud Aerosol Transport System for International Space Station (CATS-ISS) , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[21]  G. Bjorklund,et al.  Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. , 1980, Optics letters.

[22]  James B. Abshire,et al.  Ground demonstration of trace gas lidar based on optical parametric amplifier , 2012 .

[23]  J. Abshire,et al.  Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation. , 2012, Optics express.

[24]  P. Werle Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence , 2011 .