Stochastic DT-MRI Connectivity Mapping on the GPU

We present a method for stochastic fiber tract mapping from diffusion tensor MRI (DT-MRI) implemented on graphics hardware. From the simulated fibers we compute a connectivity map that gives an indication of the probability that two points in the dataset are connected by a neuronal fiber path. A Bayesian formulation of the fiber model is given and it is shown that the inversion method can be used to construct plausible connectivity. An implementation of this fiber model on the graphics processing unit (GPU) is presented. Since the fiber paths can be stochastically generated independently of one another, the algorithm is highly parallelizable. This allows us to exploit the data-parallel nature of the GPU fragment processors. We also present a framework for the connectivity computation on the GPU. Our implementation allows the user to interactively select regions of interest and observe the evolving connectivity results during computation. Results are presented from the stochastic generation of over 250,000 fiber steps per iteration at interactive frame rates on consumer-grade graphics hardware.

[1]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[2]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[3]  David H. Laidlaw,et al.  Visualizing diffusion tensor images of the mouse spinal cord , 1998 .

[4]  M. Droske,et al.  Fast Image Registration in Dx9 Graphics Hardware , 2003 .

[5]  Ross T. Whitaker,et al.  GIST: an interactive, GPU-based level set segmentation tool for 3D medical images , 2004, Medical Image Anal..

[6]  Naga K. Govindaraju,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .

[7]  Christopher Nimsky,et al.  Visualization of white matter tracts with wrapped streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[8]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[9]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[10]  Gordon L. Kindlmann,et al.  Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[11]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[12]  C. Poupon,et al.  Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles , 2000, NeuroImage.

[13]  G. Barker,et al.  Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis , 1999, Neurology.

[14]  Isabelle Bloch,et al.  Towards inference of human brain connectivity from MR diffusion tensor data , 2001, Medical Image Anal..

[15]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[17]  Thomas Ertl,et al.  GPU-Based Hyperstreamlines for Diffusion Tensor Imaging , 2006, EuroVis.

[18]  Randi J. Rost OpenGL(R) Shading Language (2nd Edition) , 2005 .

[19]  Ross T. Whitaker,et al.  A Streaming Narrow-Band Algorithm: Interactive Computation and Visualization of Level Sets , 2004, IEEE Trans. Vis. Comput. Graph..

[20]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[21]  Ross T. Whitaker,et al.  Interactive, GPU-Based Level Sets for 3D Segmentation , 2003, MICCAI.

[22]  Randi J. Rost OpenGL shading language , 2004 .

[23]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[24]  Martin Rumpf,et al.  Level set segmentation in graphics hardware , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[25]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[26]  E. Bullmore,et al.  The structural and functional mechanisms of motor recovery: complementary use of diffusion tensor and functional magnetic resonance imaging in a traumatic injury of the internal capsule , 1998, Journal of neurology, neurosurgery, and psychiatry.

[27]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[28]  Martin Rumpf,et al.  Nonlinear Diffusion in Graphics Hardware , 2001, VisSym.

[29]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[30]  Martin Rumpf,et al.  Image Registration by a Regularized Gradient Flow. A Streaming Implementation in DX9 Graphics Hardware , 2004, Computing.

[31]  P J Basser,et al.  New Histological and Physiological Stains Derived from Diffusion‐Tensor MR Images , 1997, Annals of the New York Academy of Sciences.

[32]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[33]  Martin Rumpf,et al.  Fast image registration in DirectX9 graphics hardware , 2003 .

[34]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[35]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[36]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[37]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[38]  D. Le Bihan,et al.  A framework based on spin glass models for the inference of anatomical connectivity from diffusion‐weighted MR data – a technical review , 2002, NMR in biomedicine.

[39]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[40]  Fang Xu,et al.  Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware , 2005, IEEE Transactions on Nuclear Science.

[41]  Carl-Fredrik Westin,et al.  Uncertainty in White Matter Fiber Tractography , 2005, MICCAI.

[42]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[43]  Nc Usa,et al.  Generalized Line Integral Convolution Rendering of Diffusion Tensor Fields , 2001 .

[44]  David H. Miller,et al.  Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke , 2000, Journal of neurology, neurosurgery, and psychiatry.

[45]  Martin Rumpf,et al.  Anisotropic nonlinear diffusion in flow visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[46]  Rüdiger Westermann,et al.  The application of GPU particle tracing to diffusion tensor field visualization , 2005, VIS 05. IEEE Visualization, 2005..

[47]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[48]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[49]  Carl-Fredrik Westin,et al.  Diffusion Tensor Visualization with Glyph Packing , 2006, IEEE Transactions on Visualization and Computer Graphics.

[50]  Rüdiger Westermann,et al.  MR image reconstruction using the GPU , 2006, SPIE Medical Imaging.

[51]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[53]  Christopher Nimsky,et al.  Hybrid Visualization for White Matter Tracts using Triangle Strips and Point Sprites , 2006, IEEE Transactions on Visualization and Computer Graphics.

[54]  T. L. Davis,et al.  Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. , 1999, Radiology.

[55]  Rüdiger Westermann,et al.  UberFlow: a GPU-based particle engine , 2004, SIGGRAPH '04.

[56]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[57]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[58]  P. Basser Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.

[59]  Zhizhou Wang,et al.  Line Integral Convolution for Visualization of Fiber Tract Maps from DTI , 2002, MICCAI.

[60]  Carl-Fredrik Westin,et al.  Regularized Stochastic White Matter Tractography Using Diffusion Tensor MRI , 2002, MICCAI.