Algebraic Decision Trees and Euler Characteristics

Abstract For any set S ⊆ R n , let χ(S) denote its Euler characteristic. In this paper, we show that any algebraic computation tree or fixed-degree algebraic decision tree must have height Ω(log¦χ(S)¦ − cn) for deciding the membership question of a compact semi-algebraic set S. This extends a result in Bjorner et al. (1992), where it was shown that any linear decision tree for deciding the membership question of a closed polyhedron S must have height greater than or equal to log 3 ¦χ(S)¦ .

[1]  A. Björner Topological methods , 1996 .

[2]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[3]  Pavel Pudlák,et al.  New Lower Bound for Polyhedral Membership Problem with an Application to Linear Programming , 1984, MFCS.

[4]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[5]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .

[6]  László Lovász,et al.  Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.

[7]  Andrew Chi-Chih Yao,et al.  On the Polyhedral Decision Problem , 1980, SIAM J. Comput..

[8]  Stephen Smale,et al.  On the topology of algorithms, I , 1987, J. Complex..

[9]  Jaroslav Morávek A localization problem in geometry and complexity of discrete programming , 1972, Kybernetika.

[10]  Gregory W. Brumfiel,et al.  Partially Ordered Rings and Semi-Algebraic Geometry , 1980 .

[11]  Andrew Chi-Chih Yao Lower Bounds for Algebraic Computation Trees with Integer Inputs , 1991, SIAM J. Comput..

[12]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[13]  Volker Strassen,et al.  The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..

[14]  Richard J. Lipton,et al.  On the Complexity of Computations under Varying Sets of Primitives , 1975, J. Comput. Syst. Sci..

[15]  Solomon Lefschetz,et al.  On analytical complexes , 1933 .

[16]  J. Milnor On the Betti numbers of real varieties , 1964 .

[17]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[18]  Baruch Schieber,et al.  Lower bounds for integer greatest common divisor computations , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.