Score-Driven Exponential Random Graphs: A New Class of Time-Varying Parameter Models for Dynamical Networks

Motivated by the evidence that real-world networks evolve in time and may exhibit non-stationary features, we propose an extension of the Exponential Random Graph Models (ERGMs) accommodating the time variation of network parameters. Within the ERGM framework, a network realization is sampled from a static probability distribution defined parametrically in terms of network statistics. Inspired by the fast growing literature on Dynamic Conditional Score-driven models, in our approach, each parameter evolves according to an updating rule driven by the score of the conditional distribution. We demonstrate the flexibility of the score-driven ERGMs, both as data generating processes and as filters, and we prove the advantages of the dynamic version with respect to the static one. Our method captures dynamical network dependencies, that emerge from the data, and allows for a test discriminating between static or time-varying parameters. Finally, we corroborate our findings with the application to networks from real financial and political systems exhibiting non stationary dynamics.

[1]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[2]  Tom A. B. Snijders,et al.  Markov Chain Monte Carlo Estimation of Exponential Random Graph Models , 2002, J. Soc. Struct..

[3]  John Skvoretz,et al.  8. Comparing Networks across Space and Time, Size and Species , 2002 .

[4]  Franklin Allen,et al.  Networks in Finance , 2008 .

[5]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[6]  Eric P. Xing,et al.  Discrete Temporal Models of Social Networks , 2006, SNA@ICML.

[7]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[8]  A. Harvey Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series , 2013 .

[9]  Allan Sly,et al.  Random graphs with a given degree sequence , 2010, 1005.1136.

[10]  Peter Zimmerman,et al.  The Sterling Unsecured Loan Market During 2006-08: Insights from Network Theory , 2010 .

[11]  J. MacKinnon,et al.  Econometric Theory and Methods , 2003 .

[12]  Paul R. Kleindorfer,et al.  The Network Challenge: Strategy, Profit, and Risk in an Interlinked World , 2009 .

[13]  Chenlei Leng,et al.  Asymptotics in directed exponential random graph models with an increasing bi-degree sequence , 2014, 1408.1156.

[14]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[15]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[16]  Peter J. Mucha,et al.  Portrait of Political Party Polarization1 , 2013, Network Science.

[17]  Drew D. Creal,et al.  Testing for Parameter Instability across Different Modeling Frameworks , 2016 .

[18]  S. Fienberg,et al.  Categorical Data Analysis of Single Sociometric Relations , 1981 .

[19]  Kevin Lee,et al.  A review of dynamic network models with latent variables. , 2017, Statistics surveys.

[20]  Siem Jan Koopman,et al.  Information-theoretic optimality of observation-driven time series models for continuous responses , 2015 .

[21]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[22]  John H. H. Lee A Lagrange Multiplier Test for Garch Models , 1991 .

[23]  Paul J. Laurienti,et al.  Exponential Random Graph Modeling for Complex Brain Networks , 2010, PloS one.

[24]  Martina Morris,et al.  ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. , 2008, Journal of statistical software.

[25]  Scott W. Duxbury Diagnosing Multicollinearity in Exponential Random Graph Models , 2018, Sociological Methods & Research.

[26]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[27]  F. Lillo,et al.  A General Class of Score-Driven Smoothers , 2018 .

[28]  Thomas Lux,et al.  Network analysis of the e-MID overnight money market: the informational value of different aggregation levels for intrinsic dynamic processes , 2013, Comput. Manag. Sci..

[29]  Jesse Shore,et al.  Spectral Goodness of Fit for Network Models , 2014, Soc. Networks.

[30]  J. Fowler Connecting the Congress: A Study of Cosponsorship Networks , 2006, Political Analysis.

[31]  Ben R. Craig,et al.  Interbank Tiering and Money Center Banks , 2010 .

[32]  Koen Jochmans,et al.  Semiparametric Analysis of Network Formation , 2018 .

[33]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[34]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[35]  Stephen E. Fienberg,et al.  Statistical Inference in a Directed Network Model With Covariates , 2016, Journal of the American Statistical Association.

[36]  Jun Geng,et al.  Change-point estimation in high dimensional linear regression models via sparse group Lasso , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[37]  D. Garlaschelli,et al.  Maximum likelihood: extracting unbiased information from complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  B. Graham An Econometric Model of Network Formation With Degree Heterogeneity , 2017 .

[39]  T. Snijders Stochastic actor-oriented models for network change , 1996 .

[40]  G. Kapetanios,et al.  Estimating the Dynamics and Persistence of Financial Networks, with an Application to the Sterling Money Market , 2016 .

[41]  P. Pattison,et al.  Random graph models for temporal processes in social networks , 2001 .

[42]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[43]  Bruce A. Desmarais,et al.  Statistical Mechanics of Networks: Estimation and Uncertainty Forthcoming: Physica A , 2012 .

[44]  George Michailidis,et al.  Change point estimation in high dimensional Markov random‐field models , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[45]  M. Newman,et al.  Statistical mechanics of networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  William H. Woodall,et al.  Modeling and Detecting Change in Temporal Networks via a Dynamic Degree Corrected Stochastic Block Model , 2016 .

[47]  Steven M. Goodreau,et al.  Advances in exponential random graph (p*) models applied to a large social network , 2007, Soc. Networks.

[48]  Fabrizio Lillo,et al.  A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market , 2017, Eur. J. Oper. Res..

[49]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[50]  Peng Wang,et al.  Recent developments in exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[51]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[52]  J. Kleinberg,et al.  Networks, Crowds, and Markets , 2010 .

[53]  Bruce A. Desmarais,et al.  Exponential random graph models with big networks: Maximum pseudolikelihood estimation and the parametric bootstrap , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[54]  D. J. Strauss,et al.  Pseudolikelihood Estimation for Social Networks , 1990 .

[55]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[56]  O. Barndorff-Nielsen Information and Exponential Families in Statistical Theory , 1980 .

[57]  Fabrizio Lillo,et al.  The organization of the interbank network and how ECB unconventional measures affected the e-MID overnight market , 2015, Comput. Manag. Sci..

[58]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[59]  E. Zermelo Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .

[60]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp , 1996 .

[61]  Carter T. Butts,et al.  4. A Relational Event Framework for Social Action , 2008 .

[62]  Bruce A. Desmarais,et al.  Inferential Network Analysis with Exponential Random Graph Models , 2011, Political Analysis.

[63]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[64]  Fikret Isik Karahanoglu,et al.  Dynamics of large-scale fMRI networks: Deconstruct brain activity to build better models of brain function , 2017 .

[65]  M. Handcock Center for Studies in Demography and Ecology Assessing Degeneracy in Statistical Models of Social Networks , 2005 .

[66]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[67]  Amanda L. Traud,et al.  Community Structure in Congressional Cosponsorship Networks , 2007, 0708.1191.

[68]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[69]  Zachary P. Neal,et al.  A sign of the times? Weak and strong polarization in the U.S. Congress, 1973-2016 , 2020, Soc. Networks.

[70]  Giulio Rossetti,et al.  Community Discovery in Dynamic Networks , 2017, ACM Comput. Surv..

[71]  P. Holland,et al.  An Exponential Family of Probability Distributions for Directed Graphs , 1981 .

[72]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[73]  G. Caldarelli,et al.  A Network Analysis of the Italian Overnight Money Market , 2005 .

[74]  M. Schweinberger Instability, Sensitivity, and Degeneracy of Discrete Exponential Families , 2011, Journal of the American Statistical Association.

[75]  Mark S. Handcock,et al.  A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models , 2009, Soc. Networks.

[76]  Daniel B. Nelson Asymptotically Optimal Smoothing with Arch Models , 1994 .

[77]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[78]  F. Blasques,et al.  Maximum Likelihood Estimation for Generalized Autoregressive Score Models , 2014 .

[79]  R. Engle New Frontiers for Arch Models , 2002 .

[80]  D. Hunter,et al.  Inference in Curved Exponential Family Models for Networks , 2006 .

[81]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data: Methods and Models , 2009 .

[82]  Pavel N. Krivitsky,et al.  Exponential-Family Models of Random Graphs: Inference in Finite-, Super-, and Infinite Population Scenarios , 2017 .

[83]  Ove Frank,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[84]  F. Blasques,et al.  Finite Sample Optimality of Score-Driven Volatility Models , 2017 .

[85]  Gen Li,et al.  Varying-coefficient models for dynamic networks , 2017, Comput. Stat. Data Anal..

[86]  P. Pattison,et al.  New Specifications for Exponential Random Graph Models , 2006 .

[87]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .