Multiscale Hypsometric Mapping

Multiple representations of geographic objects draw one of the main focuses in modern cartographic research. Initial works were concentrated on multiresolution databases and elevation models derivation through generalization process. Development of interactive computer mapping in 90-00’s lead to growth of interest in visual representations of multilevel objects. However, the task of multiscale mapping of earth topography has not been paid a due attention. In this work a complete technology of making multiscale hypsometric maps is proposed, beginning from scales and projection definition, walking through database design and DEM generalization with novel algorithm and finally outlining map preparation using hypsometric tints, contours and hill shading.

[1]  Dawn Youngblood,et al.  Cartographic Relief Presentation , 2010 .

[2]  Robert Weibel,et al.  GIS and generalization: methodology and practice. , 1995 .

[3]  Leila De Floriani,et al.  Multiresolution models for topographic surface description , 1996, The Visual Computer.

[4]  Gyozo Jordan Adaptive smoothing of valleys in DEMs using TIN interpolation from ridgeline elevations: An application to morphotectonic aspect analysis , 2007, Comput. Geosci..

[5]  Y. Doytsher,et al.  ITG Inc.Producing Seamless Multi-Source Quality-Dependent Digital Terrain Models , 2009 .

[6]  Robert Weibel,et al.  Improving Automated Generalisation for On- Demand Web Mapping by Multiscale Databases , 2002 .

[8]  Bernhard Jenny,et al.  Automatic generation of hypsometric layers for small-scale maps , 2009, Comput. Geosci..

[9]  Bernhard Jenny,et al.  Automated Reduction of Visual Complexity in Small-Scale Relief Shading , 2010, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[10]  Tinghua Ai,et al.  The drainage network extraction from contour lines for contour line generalization , 2007 .

[11]  Study on Simplification of Contour Lines Preserving Topological Coherence , 2007 .

[12]  John D. Bossler,et al.  Producing Intermediate Contours from Digitized Contours , 1989 .

[13]  Keith C. Clarke,et al.  Scale-Based Simulation of Topographic Relief , 1988 .

[14]  Barbara P. Buttenfield,et al.  Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping , 2010, GeoInformatica.

[15]  Bernhard Jenny,et al.  Map design for the Internet , 2008 .

[16]  Zarine P. Kemp,et al.  Innovations in GIS 4 , 1997 .

[17]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[18]  Li Yang,et al.  DEM generalization based on analysis of geometry and landscape context , 2007, International Symposium on Multispectral Image Processing and Pattern Recognition.

[19]  W. Mackaness,et al.  10th ICA Workshop on Generalisation and Multiple Representation , 2007 .

[20]  Michael P. Peterson International perspectives on maps and the Internet , 2008 .

[21]  T. Blaschke,et al.  A Comparison of Methods to Incorporate Scale in Geomorphometry , 2009 .

[22]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[23]  Jingzhong Li,et al.  A DEM generalization by minor valley branch detection and grid filling , 2010 .

[24]  Christopher B. Jones,et al.  Database Design for a Multi-Scale Spatial Information System , 1996, Int. J. Geogr. Inf. Sci..

[25]  Robert Weibel AN ADAPTIVE METHODOLOGY FOR AUTOMATED RELIEF GENERALIZATION , 2008 .

[26]  J. C. Loon,et al.  Cartographic generalization of digital terrain models , 1978 .

[27]  Bernd Hamann,et al.  Crusta: A new virtual globe for real-time visualization of sub-meter digital topography at planetary scales , 2011, Comput. Geosci..

[28]  Zhilin Li Algorithmic Foundation of Multi-Scale Spatial Representation , 2006 .