Optical Bell state and Greenberger―Horne―Zeilinger-state analyzers through the cavity input―output process

Abstract With the ancillary one-sided cavities each trapping an alkali atom, the schemes for the analyzers of two-photon Bell states and three-photon Greenberger–Horne–Zeilinger (GHZ) states are proposed, respectively. Moreover, all of two-photon Bell states and three-photon GHZ states can be nondestructively distinguished. The influence of atomic spontaneous emission and output coupling inefficiency are discussed.

[1]  Zheng-Fu Han,et al.  Realizing quantum controlled phase flip through cavity QED (5 pages) , 2004 .

[2]  N. Gisin,et al.  Quantum teleportation with a three-Bell-state analyzer. , 2006 .

[3]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[4]  Nonlocal gate of quantum network via cavity quantum electrodynamics (4 pages) , 2005, quant-ph/0501125.

[5]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[6]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[7]  Yun-Feng Xiao,et al.  Universal quantum computation in decoherence-free subspace with neutral atoms. , 2006, Physical review letters.

[8]  Xiu-Min Lin,et al.  Scalable preparation of multiple-particle entangled states via the cavity input-output process , 2006 .

[9]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[10]  Jaeyoon Cho,et al.  Generation of atomic cluster states through the cavity input-output process. , 2005, Physical review letters.

[11]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[12]  N. Lütkenhaus,et al.  Maximum efficiency of a linear-optical Bell-state analyzer , 2001 .

[13]  G. Guo,et al.  Generation of polarization-entangled photon pairs through cavity-assisted interaction , 2006 .

[14]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[15]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[16]  Shangqing Gong,et al.  Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection , 2005 .

[17]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[18]  Z. Zhou,et al.  One-step implementation of a multiqubit controlled-phase-flip gate (7 pages) , 2006 .

[19]  G. Rempe,et al.  Normal-mode spectroscopy of a single-bound-atom-cavity system. , 2004, Physical review letters.

[20]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[21]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[22]  G. Agarwal Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity , 1984 .

[23]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[24]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.