Computation of the Exponential of Large Sparse Skew-Symmetric Matrices

In this paper we consider methods for evaluating both exp(A) and $exp(\tau A)q_1$ where ${\rm exp}(\cdot)$ is the exponential function, A is a sparse skew-symmetric matrix of large dimension, q1 is a given vector, and $\tau$ is a scaling factor. The proposed method is based on two main steps: A is factorized into its tridiagonal form H by the well-known Lanczos iterative process, and then exp(A) is derived making use of an effective Schur decomposition of H. The procedure takes full advantage of the sparsity of A and of the decay behavior of exp(H). Several applications and numerical tests are also reported.

[1]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[2]  T. Politi,et al.  A Formula for the Exponential of a Real Skew-Symmetric Matrix of Order 4 , 2001 .

[3]  Willem Hundsdorfer,et al.  Numerical Solution of Advection-Diffusion-Reaction Equations , 1996 .

[4]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[5]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[6]  Antonella Zanna The method of iterated commutators for ordinary differential equations on Lie groups , 1996 .

[7]  Marco Vianello,et al.  Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..

[8]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[9]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[10]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[11]  Arieh Iserles How Large is the Exponential of a Banded Matrix , 1999 .

[12]  A O Barut,et al.  The exponential map for the conformal group O(2,4) , 1994 .

[13]  Peter E. Crouch,et al.  Closed forms for the exponential mapping on matrix Lie groups based on Putzer’s method , 1999 .

[14]  Elena Celledoni,et al.  A note on the numerical integration of the KdV equation via isospectral deformations , 2001 .

[15]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[16]  Antonella Zanna,et al.  Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..

[17]  Antonella Zanna,et al.  Efficient Computation of the Matrix Exponential by Generalized Polar Decompositions , 2004, SIAM J. Numer. Anal..

[18]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[19]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[20]  Hans Z. Munthe-Kaas,et al.  Square-Conservative Schemes for a Class of Evolution Equations Using Lie-Group Methods , 2001, SIAM J. Numer. Anal..

[21]  Elena Celledoni,et al.  Approximating the exponential from a Lie algebra to a Lie group , 2000, Math. Comput..

[22]  A. Iserles,et al.  On the Implementation of the Method of Magnus Series for Linear Differential Equations , 1999 .

[23]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[24]  Ben Leimkuhler ADAPTIVE GEOMETRIC INTEGRATORS BASED ON SPLITTING, SCALING, AND SWITCHING , 2000 .

[25]  G. Golub,et al.  Bounds for the Entries of Matrix Functions with Applications to Preconditioning , 1999 .

[26]  A. Iserles,et al.  Methods for the approximation of the matrix exponential in a Lie‐algebraic setting , 1999, math/9904122.

[27]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[28]  Marco Vianello,et al.  Efficient Computation of the Exponential Operator for Large, Sparse, Symmetric Matrices , 2000 .