Computation of the Exponential of Large Sparse Skew-Symmetric Matrices
暂无分享,去创建一个
N. Del Buono | Luciano Lopez | R. Peluso | N. Buono | L. Lopez | R. Peluso
[1] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[2] T. Politi,et al. A Formula for the Exponential of a Real Skew-Symmetric Matrix of Order 4 , 2001 .
[3] Willem Hundsdorfer,et al. Numerical Solution of Advection-Diffusion-Reaction Equations , 1996 .
[4] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[5] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[6] Antonella Zanna. The method of iterated commutators for ordinary differential equations on Lie groups , 1996 .
[7] Marco Vianello,et al. Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..
[8] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .
[9] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[10] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[11] Arieh Iserles. How Large is the Exponential of a Banded Matrix , 1999 .
[12] A O Barut,et al. The exponential map for the conformal group O(2,4) , 1994 .
[13] Peter E. Crouch,et al. Closed forms for the exponential mapping on matrix Lie groups based on Putzer’s method , 1999 .
[14] Elena Celledoni,et al. A note on the numerical integration of the KdV equation via isospectral deformations , 2001 .
[15] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[16] Antonella Zanna,et al. Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..
[17] Antonella Zanna,et al. Efficient Computation of the Matrix Exponential by Generalized Polar Decompositions , 2004, SIAM J. Numer. Anal..
[18] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[19] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[20] Hans Z. Munthe-Kaas,et al. Square-Conservative Schemes for a Class of Evolution Equations Using Lie-Group Methods , 2001, SIAM J. Numer. Anal..
[21] Elena Celledoni,et al. Approximating the exponential from a Lie algebra to a Lie group , 2000, Math. Comput..
[22] A. Iserles,et al. On the Implementation of the Method of Magnus Series for Linear Differential Equations , 1999 .
[23] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[24] Ben Leimkuhler. ADAPTIVE GEOMETRIC INTEGRATORS BASED ON SPLITTING, SCALING, AND SWITCHING , 2000 .
[25] G. Golub,et al. Bounds for the Entries of Matrix Functions with Applications to Preconditioning , 1999 .
[26] A. Iserles,et al. Methods for the approximation of the matrix exponential in a Lie‐algebraic setting , 1999, math/9904122.
[27] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[28] Marco Vianello,et al. Efficient Computation of the Exponential Operator for Large, Sparse, Symmetric Matrices , 2000 .