Exact Classification with Two-Layered Perceptrons

We study the capabilities of two-layered perceptrons for classifying exactly a given subset. Both necessary and sufficient conditions are derived for subsets to be exactly classifiable with two-layered perceptrons that use the hard-limiting response function. The necessary conditions can be viewed as generalizations of the linear-separability condition of one-layered perceptrons and confirm the conjecture that the capabilities of two-layered perceptrons are more limited than those of three-layered perceptrons. The sufficient conditions show that the capabilities of two-layered perceptrons extend beyond the exact classification of convex subsets. Furthermore, we present an algorithmic approach to the problem of verifying the sufficiency condition for a given subset.