A splitting-free vorticity redistribution method

We present a splitting-free variant of the vorticity redistribution method. Spatial consistency and stability when combined with a time-stepping scheme are proven. We propose a new strategy preventing excessive growth in the number of particles while retaining the order of consistency. The novel concept of small neighbourhoods significantly reduces the method's computational cost. In numerical experiments the method showed second order convergence, one order higher than predicted by the analysis. Compared to the fast multipole code used in the velocity computation, the method is about three times faster.

[1]  Ivo F. Sbalzarini,et al.  Discretization correction of general integral PSE Operators for particle methods , 2010, J. Comput. Phys..

[2]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  S. Shankar,et al.  A New Diffusion Procedure for Vortex Methods , 1996 .

[5]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[6]  Walter Dehnen,et al.  A Hierarchical O(N) Force Calculation Algorithm , 2002 .

[7]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[8]  Ahmed F. Ghoniem,et al.  A high resolution spatially adaptive vortex method for separating flows. Part I: Two-dimensional domains , 2009, J. Comput. Phys..

[9]  Louis F. Rossi,et al.  Resurrecting Core Spreading Vortex Methods: A New Scheme that is Both Deterministic and Convergent , 1996, SIAM J. Sci. Comput..

[10]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  A. Majda,et al.  Rates of convergence for viscous splitting of the Navier-Stokes equations , 1981 .

[13]  Roger Fletcher,et al.  Stable modification of explicitLU factors for simplex updates , 1984, Math. Program..

[14]  B. Seibold,et al.  Performance of algebraic multigrid methods for non‐symmetric matrices arising in particle methods , 2009, Numer. Linear Algebra Appl..

[15]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[16]  Benjamin Seibold,et al.  Minimal positive stencils in meshfree finite difference methods for the Poisson equation , 2008, 0802.2674.

[17]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[18]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .