Numerical simulation and experimental comparison of flaw evolution on a bearing raceway: Case of thrust ball bearing

Abstract Bearings are essential elements in the design of rotating machines. In an industrial context, bearing failure can have costly consequences. This paper presents a study of the rolling contact fatigue damage applied to thrust ball bearings. It consists in building a dynamic three-dimensional numerical model of the cyclic shift of a ball on an indented rolling surface, using finite element analysis (FEA). Assessment of the evolution in size of a surface spall as a function of loading cycles is also performed using FEM coupled with fatigue laws. Results are in good agreement with laboratory tests carried out under the same conditions using a fatigue test cell dedicated to ball bearings. This study may improve knowledge about estimating the lifetime of rolling components after onset of a spall using FEA and accounting for structural damage state.

[1]  Fabrice Bolaers,et al.  Following the growth of a rolling fatigue spalling for predictive maintenance , 2013 .

[2]  Kevin L. Thompson,et al.  Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part I: Experimental Results , 2009 .

[3]  Yong-joo Cho,et al.  The Fatigue Crack Initiation Life Prediction Based on Several High-Cycle Fatigue Criteria under Spherical Rolling Contact , 2003 .

[4]  Jean-Louis Chaboche,et al.  ASPECT PHENOMENOLOGIQUE DE LA RUPTURE PAR ENDOMMAGEMENT , 1978 .

[5]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[6]  Toumi M. Yessine,et al.  Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings , 2015 .

[7]  C. Jacq Limite d'endurance et durée de vie en fatigue de roulement du 32CrMoV13 nitruré en présence d'indentations , 2001 .

[8]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories , 1996 .

[9]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[10]  Sankaran Mahadevan,et al.  Fatigue crack initiation life prediction of railroad wheels , 2006 .

[11]  Nelson H. Forster,et al.  Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part II: Stress Modeling , 2009 .

[12]  Hitesh K. Trivedi,et al.  Rolling Contact Fatigue Life and Spall Propagation Characteristics of AISI M50, M50 NiL, and AISI 52100, Part III: Metallurgical Examination , 2009 .

[13]  Y. Guo,et al.  Damage and Rupture Simulation for Mechanical Parts Under Cyclic Loadings , 2010 .