Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system

In this paper, a new 3D autonomous Lorenz-type chaotic system is modelled based on the condition that the system may generate chaos whereas it has only stable or non-hyperbolic equilibrium points. This system also includes some well-known Lorenz-like systems as its special cases, such as the diffusionless Lorenz system, the Burke-Shaw system and some other systems found. Although the new chaotic system is similar to other Lorenz-type systems in algebraic structure, they are topologically non-equivalent. This interesting fact motivates one to further investigate its dynamical behaviours, such as the number and the stability of equilibrium points, Hopf bifurcation and its direction, Poincaré maps, Lyapunov exponents and dissipativity, etc. Given numerical simulations not only verify the corresponding theoretically analytical results, but also demonstrate that this system possesses abundant and complex dynamical properties, which need further attention.

[1]  J. M. Ottino,et al.  Morphological structures produced by mixing in chaotic flows , 1988, Nature.

[2]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[3]  Gonzalo Alvarez,et al.  Breaking projective chaos synchronization secure communication using filtering and generalized synchronization , 2004, Chaos, Solitons & Fractals.

[4]  Guanrong Chen,et al.  A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.

[5]  Buncha Munmuangsaen,et al.  A new five-term simple chaotic attractor , 2009 .

[6]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[7]  Guanrong Chen,et al.  On stability and bifurcation of Chen’s system , 2004 .

[8]  P. Gaspard,et al.  Investigation of the Lorentz gas in terms of periodic orbits. , 1992, Chaos.

[9]  Denis de Carvalho Braga,et al.  Bifurcation analysis of the Watt governor system , 2006 .

[10]  Guanrong Chen,et al.  On the generalized Lorenz canonical form , 2005 .

[11]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[14]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[15]  Sergej Celikovský,et al.  Bilinear systems and chaos , 1994, Kybernetika.

[16]  C. Bianca Weyl-flow and the conformally symplectic structure of thermostatted billiards: The problem of the hyperbolicity , 2011 .

[17]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[18]  O. Rössler An equation for continuous chaos , 1976 .

[19]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[20]  Denis de Carvalho Braga,et al.  Hopf Bifurcations in a Watt Governor with a Spring , 2008, 0802.4438.

[21]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[22]  Gheorghe Tigan,et al.  Heteroclinic orbits in the T and the Lü systems , 2009 .

[23]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[24]  C. Bianca On the mathematical transport theory in microporous media: The billiard approach , 2010 .

[25]  C. Dellago,et al.  Lyapunov Spectrum and the Conjugate Pairing Rule for a Thermostatted Random Lorentz Gas: Numerical Simulations , 1997 .

[26]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[27]  C. Bianca,et al.  The nonequilibrium Ehrenfest gas: a chaotic model with flat obstacles? , 2008, Chaos.

[28]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[29]  Kuifei Huang,et al.  Stability and Hopf bifurcation analysis of a new system , 2009 .

[30]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[31]  Guanrong Chen,et al.  Complex Dynamical Behaviors of the Chaotic Chen's System , 2003, Int. J. Bifurc. Chaos.

[32]  Qigui Yang,et al.  Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci , 2010, Appl. Math. Comput..

[33]  Zensho Yoshida,et al.  Collisionless Heating of Electrons by Meandering Chaos and Its Application to a Low-Pressure Plasma Source , 1997 .

[34]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[35]  R. Robinson,et al.  Homoclinic bifurcation to a transitive attractor of Lorenz type , 1989 .

[36]  Guanrong Chen,et al.  Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.

[37]  L. Horwitz,et al.  BE A STRANGE ATTRACTOR ? , 2004 .

[38]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[39]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[40]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[41]  Baras,et al.  Chaotic scattering and diffusion in the Lorentz gas. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[43]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[44]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[45]  Guanrong Chen,et al.  A Note on Hopf bifurcation in Chen's System , 2003, Int. J. Bifurc. Chaos.

[46]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Yongguang Yu,et al.  Hopf bifurcation in the Lü system , 2003 .

[48]  G. Morriss,et al.  The nonequilibrium Lorentz gas. , 1995, Chaos.

[49]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[50]  Yongguang Yu,et al.  Hopf bifurcation analysis of the Lü system , 2004 .