A Method for Determining the Affine Equivalence of Boolean Functions

Determining the affine equivalence of Boolean functions has significant applications in circuit and cryptography. Previous methods for determining this require a large amount of computation when Boolean functions are bent functions or when the truth table is sparse. This paper presents a new method to determine the affine equivalence based on matrix algebra. By transforming Boolean function to the corresponding matrix representation, we first propose and prove the congruent standard form of Boolean function. It lays the foundation for the determination of equivalence because affine Boolean functions must have the same standard form. Then we find the generators of orthogonal matrix group and symplectic matrix group, which greatly reduce the search space. The computation complexity of our method is <inline-formula> <tex-math notation="LaTeX">$o(2^{r^{2}/2+n*(n-r)})$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is the number of bit operations, and <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> is the rank of the matrix, which is the product of Boolean-1 matrix of the test Boolean function and its transposition. The experimental results show that our method is useful when the test Boolean function is no more than 7 bits and <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> is greater than 2.

[1]  Iwan M. Duursma,et al.  Reed-Muller Codes on Complete Intersections , 2001, Applicable Algebra in Engineering, Communication and Computing.

[2]  Ladislav A. Novak,et al.  A comment on "Boolean functions classification via fixed polarity Reed-Muller form" , 2006, IEEE Transactions on Computers.

[3]  Vincent Rijmen,et al.  The Block Cipher Square , 1997, FSE.

[4]  Pantelimon Stanica Affine equivalence of quartic monomial rotation symmetric Boolean functions in prime power dimension , 2015, Inf. Sci..

[5]  Xiang-dong Hou Cubic bent functions , 1998, Discret. Math..

[6]  William Millan,et al.  Linear Redundancy in S-Boxes , 2003, FSE.

[7]  Daizhan Cheng,et al.  Block Decoupling of Boolean Control Networks , 2019, IEEE Transactions on Automatic Control.

[8]  Anne Canteaut,et al.  On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting , 2018, IACR Cryptol. ePrint Arch..

[9]  Jung Hee Cheon,et al.  An Efficient Affine Equivalence Algorithm for Multiple S-Boxes and a Structured Affine Layer , 2016, SAC.

[10]  Sugata Gangopadhyay,et al.  On affine (non)equivalence of Boolean functions , 2009, Computing.

[11]  Bart Preneel,et al.  Classification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties , 2005, ICALP.

[12]  Guowu Yang,et al.  A Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature , 2017, IEEE Access.

[13]  Calin Belta,et al.  Temporal logic control of discrete-time piecewise affine systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[14]  Sugata Gangopadhyay Affine inequivalence of cubic Maiorana-McFarland type bent functions , 2013, Discret. Appl. Math..

[15]  Zheng Huang,et al.  Fast Boolean matching based on NPN classification , 2013, 2013 International Conference on Field-Programmable Technology (FPT).

[16]  Itai Dinur,et al.  An Improved Affine Equivalence Algorithm for Random Permutations , 2018, IACR Cryptol. ePrint Arch..

[17]  Sugata Gangopadhyay,et al.  On the lower bounds of the second order nonlinearities of some Boolean functions , 2009, Inf. Sci..

[18]  Ling-guo Cui,et al.  A NEW S-BOX STRUCTURE NAMED AFFINE-POWER-AFFINE , 2007 .

[19]  Biao Wang,et al.  Input observability of Boolean control networks , 2019, Neurocomputing.

[20]  Valentina Ciriani Synthesis of SPP three-level logic networks using affine spaces , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  James A. Maiorana A classification of the cosets of the Reed-Muller code R(1, 6) , 1991 .

[22]  Guowu Yang,et al.  Computing Affine Equivalence Classes of Boolean Functions by Group Isomorphism , 2016, IEEE Transactions on Computers.

[23]  Alberto Bemporad,et al.  Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form , 2004, IEEE Transactions on Automatic Control.

[24]  Thomas W. Cusick,et al.  Theory of 3-rotation symmetric cubic Boolean functions , 2015, J. Math. Cryptol..

[25]  Elwyn R. Berlekamp,et al.  Weight distributions of the cosets of the (32, 6) Reed-Muller code , 1972, IEEE Trans. Inf. Theory.