暂无分享,去创建一个
Roland Herzog | Ronny Bergmann | Stephan Schmidt | Marc Herrmann | José Vidal-Núñez | R. Herzog | S. Schmidt | Ronny Bergmann | M. Herrmann | J. Vidal-Núñez
[1] Alfred M. Bruckstein,et al. On Similarity-Invariant Fairness Measures , 2005, Scale-Space.
[2] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[3] John M. Sullivan,et al. Curvatures of Smooth and Discrete Surfaces , 2007, 0710.4497.
[4] Lawrence Mitchell,et al. Automated shape differentiation in the Unified Form Language , 2018, Structural and Multidisciplinary Optimization.
[5] M. Wardetzky. Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .
[6] M. Alexa,et al. Discrete Laplacians on general polygonal meshes , 2011, ACM Transactions on Graphics.
[7] Zheng Liu,et al. Mesh denoising via total variation and weighted Laplacian regularizations , 2018, Comput. Animat. Virtual Worlds.
[8] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[9] Mary W Marzke,et al. Three-dimensional quantitative comparative analysis of trapezial-metacarpal joint surface curvatures in human populations. , 2012, The Journal of hand surgery.
[10] Selim Esedoglu,et al. Analogue of the Total Variation Denoising Model in the Context of Geometry Processing , 2009, Multiscale Model. Simul..
[11] A. Langer. Automated parameter selection in the L 1 ‐ L 2 -TV model for removing Gaussian plus impulse noise , 2017 .
[12] Michael Vogelius,et al. A backprojection algorithm for electrical impedance imaging , 1990 .
[13] J. López,et al. On the reinitialization procedure in a narrow‐band locally refined level set method for interfacial flows , 2005 .
[14] Keenan Crane,et al. Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.
[15] Eric T. Chung,et al. Electrical impedance tomography using level set representation and total variational regularization , 2005 .
[16] Ron Kimmel,et al. Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..
[17] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[18] D. Kumar. OPTIMIZATION METHODS , 2007 .
[19] Martin Burger,et al. Iterative total variation schemes for nonlinear inverse problems , 2009 .
[20] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[21] Jiansong Deng,et al. Variational Mesh Denoising Using Total Variation and Piecewise Constant Function Space , 2015, IEEE Transactions on Visualization and Computer Graphics.
[22] Daniel Cremers,et al. Total Variation Regularization for Functions with Values in a Manifold , 2013, 2013 IEEE International Conference on Computer Vision.
[23] Carola-Bibiane Schönlieb,et al. Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models , 2015, Journal of Mathematical Imaging and Vision.
[24] V. Mow,et al. Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. , 1992, Journal of biomechanics.
[25] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[26] Chi-Wing Fu,et al. Mesh Denoising using Extended ROF Model with L1 Fidelity , 2015, Comput. Graph. Forum.
[27] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[28] K. Polthier. Computational Aspects of Discrete Minimal Surfaces , 2002 .
[29] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[30] Richard G. Baraniuk,et al. Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..
[31] Ross T. Whitaker,et al. Geometric surface processing via normal maps , 2003, TOGS.
[32] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[33] Xavier Bresson,et al. Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..
[34] Günther Greiner,et al. Variational Design and Fairing of Spline Surfaces , 1994, Comput. Graph. Forum.
[35] Anshuman Razdan,et al. Improved Curvature Estimation for Watershed Segmentation of 3-Dimensional Meshes , 2001 .
[36] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[37] N. Lott,et al. Method for fairing B-spline surfaces , 1988 .
[38] Qingmao Hu,et al. Curvature-dependent surface visualization of vascular structures , 2010, Comput. Medical Imaging Graph..
[39] M. Spackman,et al. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. , 2004, Acta crystallographica. Section B, Structural science.
[40] A. Langer. Automated parameter selection in the -TV model for removing Gaussian plus impulse noise , 2017 .
[41] Gabriele Steidl,et al. A Parallel Douglas-Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds , 2015, SIAM J. Imaging Sci..
[42] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[43] Shiqian Ma,et al. Primal-dual optimization algorithms over Riemannian manifolds: an iteration complexity analysis , 2017, Mathematical Programming.
[44] Andrew P. Witkin,et al. Variational surface modeling , 1992, SIGGRAPH.
[45] Miroslav Bacák,et al. Computing Medians and Means in Hadamard Spaces , 2012, SIAM J. Optim..
[46] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .
[47] André Uschmajew,et al. A Riemannian Gradient Sampling Algorithm for Nonsmooth Optimization on Manifolds , 2017, SIAM J. Optim..
[48] Hans Hagen,et al. Automatic smoothing with geometric surface patches , 1987, Comput. Aided Geom. Des..
[49] Alexander I. Bobenko,et al. A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..
[50] Andrew P. Witkin,et al. Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.
[51] M. Giaquinta,et al. Maps of Bounded Variation with Values into a Manifold: Total Variation and Relaxed Energy , 2007 .
[52] Takashi Maekawa. Robust computational methods for shape interrogation , 1993 .
[53] Martin Kilian,et al. Visual smoothness of polyhedral surfaces , 2019, ACM Trans. Graph..
[54] Michael M. Bronstein,et al. MADMM: A Generic Algorithm for Non-smooth Optimization on Manifolds , 2015, ECCV.
[55] Roland Herzog,et al. Fenchel Duality for Convex Optimization and a Primal Dual Algorithm on Riemannian Manifolds , 2019, ArXiv.
[56] Anders Logg,et al. Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.
[57] G. Anastassiou,et al. Differential Geometry of Curves and Surfaces , 2014 .
[58] Wotao Yin,et al. Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.
[59] Marc Alexa,et al. Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..
[60] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[61] R. Chan,et al. Restoration of Manifold-Valued Images by Half-Quadratic Minimization , 2015, 1505.07029.
[62] John M. Sullivan,et al. Curvature measures for discrete surfaces , 2005, SIGGRAPH Courses.
[63] Ronny Bergmann,et al. A Graph Framework for Manifold-Valued Data , 2017, SIAM J. Imaging Sci..
[64] Nicholas M. Patrikalakis,et al. Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.
[65] Rongjie Lai,et al. A Splitting Method for Orthogonality Constrained Problems , 2014, J. Sci. Comput..
[66] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .