Discrete total variation of the normal vector field as shape prior with applications in geometric inverse problems

An analogue of the total variation prior for the normal vector field along the boundary of piecewise flat shapes in 3D is introduced. A major class of examples are triangulated surfaces as they occur for instance in finite element computations. The analysis of the functional is based on a differential geometric setting in which the unit normal vector is viewed as an element of the two-dimensional sphere manifold. It is found to agree with the discrete total mean curvature known in discrete differential geometry. A split Bregman iteration is proposed for the solution of discretized shape optimization problems, in which the total variation of the normal appears as a regularizer. Unlike most other priors, such as surface area, the new functional allows for piecewise flat shapes. As two applications, a mesh denoising and a geometric inverse problem of inclusion detection type involving a partial differential equation are considered. Numerical experiments confirm that polyhedral shapes can be identified quite accurately.

[1]  Alfred M. Bruckstein,et al.  On Similarity-Invariant Fairness Measures , 2005, Scale-Space.

[2]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[3]  John M. Sullivan,et al.  Curvatures of Smooth and Discrete Surfaces , 2007, 0710.4497.

[4]  Lawrence Mitchell,et al.  Automated shape differentiation in the Unified Form Language , 2018, Structural and Multidisciplinary Optimization.

[5]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[6]  M. Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Transactions on Graphics.

[7]  Zheng Liu,et al.  Mesh denoising via total variation and weighted Laplacian regularizations , 2018, Comput. Animat. Virtual Worlds.

[8]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[9]  Mary W Marzke,et al.  Three-dimensional quantitative comparative analysis of trapezial-metacarpal joint surface curvatures in human populations. , 2012, The Journal of hand surgery.

[10]  Selim Esedoglu,et al.  Analogue of the Total Variation Denoising Model in the Context of Geometry Processing , 2009, Multiscale Model. Simul..

[11]  A. Langer Automated parameter selection in the L 1 ‐ L 2 -TV model for removing Gaussian plus impulse noise , 2017 .

[12]  Michael Vogelius,et al.  A backprojection algorithm for electrical impedance imaging , 1990 .

[13]  J. López,et al.  On the reinitialization procedure in a narrow‐band locally refined level set method for interfacial flows , 2005 .

[14]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[15]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[16]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[17]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[18]  D. Kumar OPTIMIZATION METHODS , 2007 .

[19]  Martin Burger,et al.  Iterative total variation schemes for nonlinear inverse problems , 2009 .

[20]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[21]  Jiansong Deng,et al.  Variational Mesh Denoising Using Total Variation and Piecewise Constant Function Space , 2015, IEEE Transactions on Visualization and Computer Graphics.

[22]  Daniel Cremers,et al.  Total Variation Regularization for Functions with Values in a Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[23]  Carola-Bibiane Schönlieb,et al.  Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models , 2015, Journal of Mathematical Imaging and Vision.

[24]  V. Mow,et al.  Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. , 1992, Journal of biomechanics.

[25]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[26]  Chi-Wing Fu,et al.  Mesh Denoising using Extended ROF Model with L1 Fidelity , 2015, Comput. Graph. Forum.

[27]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[28]  K. Polthier Computational Aspects of Discrete Minimal Surfaces , 2002 .

[29]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[30]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[31]  Ross T. Whitaker,et al.  Geometric surface processing via normal maps , 2003, TOGS.

[32]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[33]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[34]  Günther Greiner,et al.  Variational Design and Fairing of Spline Surfaces , 1994, Comput. Graph. Forum.

[35]  Anshuman Razdan,et al.  Improved Curvature Estimation for Watershed Segmentation of 3-Dimensional Meshes , 2001 .

[36]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[37]  N. Lott,et al.  Method for fairing B-spline surfaces , 1988 .

[38]  Qingmao Hu,et al.  Curvature-dependent surface visualization of vascular structures , 2010, Comput. Medical Imaging Graph..

[39]  M. Spackman,et al.  Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. , 2004, Acta crystallographica. Section B, Structural science.

[40]  A. Langer Automated parameter selection in the -TV model for removing Gaussian plus impulse noise , 2017 .

[41]  Gabriele Steidl,et al.  A Parallel Douglas-Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds , 2015, SIAM J. Imaging Sci..

[42]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[43]  Shiqian Ma,et al.  Primal-dual optimization algorithms over Riemannian manifolds: an iteration complexity analysis , 2017, Mathematical Programming.

[44]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[45]  Miroslav Bacák,et al.  Computing Medians and Means in Hadamard Spaces , 2012, SIAM J. Optim..

[46]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[47]  André Uschmajew,et al.  A Riemannian Gradient Sampling Algorithm for Nonsmooth Optimization on Manifolds , 2017, SIAM J. Optim..

[48]  Hans Hagen,et al.  Automatic smoothing with geometric surface patches , 1987, Comput. Aided Geom. Des..

[49]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[50]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[51]  M. Giaquinta,et al.  Maps of Bounded Variation with Values into a Manifold: Total Variation and Relaxed Energy , 2007 .

[52]  Takashi Maekawa Robust computational methods for shape interrogation , 1993 .

[53]  Martin Kilian,et al.  Visual smoothness of polyhedral surfaces , 2019, ACM Trans. Graph..

[54]  Michael M. Bronstein,et al.  MADMM: A Generic Algorithm for Non-smooth Optimization on Manifolds , 2015, ECCV.

[55]  Roland Herzog,et al.  Fenchel Duality for Convex Optimization and a Primal Dual Algorithm on Riemannian Manifolds , 2019, ArXiv.

[56]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[57]  G. Anastassiou,et al.  Differential Geometry of Curves and Surfaces , 2014 .

[58]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[59]  Marc Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..

[60]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[61]  R. Chan,et al.  Restoration of Manifold-Valued Images by Half-Quadratic Minimization , 2015, 1505.07029.

[62]  John M. Sullivan,et al.  Curvature measures for discrete surfaces , 2005, SIGGRAPH Courses.

[63]  Ronny Bergmann,et al.  A Graph Framework for Manifold-Valued Data , 2017, SIAM J. Imaging Sci..

[64]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[65]  Rongjie Lai,et al.  A Splitting Method for Orthogonality Constrained Problems , 2014, J. Sci. Comput..

[66]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .