Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks

The goal of this paper is to prove the well-posedness for the governing equations which are used for cylindrical cloaking simulation. A new time-domain finite element scheme is developed to solve the governing equations. Numerical results demonstrating the cloaking phenomenon with the cylindrical cloak are presented. We finally extend the analysis and simulation to an elliptical cloak model.

[1]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[2]  Simon Shaw,et al.  Finite Element Approximation of Maxwell's Equations with Debye Memory , 2010, Adv. Numer. Anal..

[3]  Ting Zhou,et al.  On Approximate Electromagnetic Cloaking by Transformation Media , 2010, SIAM J. Appl. Math..

[4]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[5]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  M. Qiu,et al.  Invisibility Cloaking by Coordinate Transformation , 2009 .

[7]  Habib Ammari,et al.  Spectral Theory of a Neumann–Poincaré-Type Operator and Analysis of Cloaking Due to Anomalous Localized Resonance , 2011, 1212.5066.

[8]  R. Mittra,et al.  FDTD Modeling of Metamaterials: Theory and Applications , 2008 .

[9]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[10]  Eric T. Chung,et al.  Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids , 2013, J. Comput. Phys..

[11]  T. Tyc,et al.  Broadband Invisibility by Non-Euclidean Cloaking , 2009, Science.

[12]  Ulf Leonhardt,et al.  Geometry and light: The science of invisibility , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[13]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[14]  M. Raffetto,et al.  WELL-POSEDNESS AND FINITE ELEMENT APPROXIMABILITY OF TIME-HARMONIC ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS INVOLVING BIANISOTROPIC MATERIALS AND METAMATERIALS , 2009 .

[15]  Jan S. Hesthaven Time-domain finite element methods for Maxwell"s equations in metamaterials , 2014 .

[16]  Qiang Cheng,et al.  CORRIGENDUM: Arbitrarily elliptical cylindrical invisible cloaking , 2008 .

[17]  Klaus Halterman,et al.  Total transmission and total reflection by zero index metamaterials with defects. , 2010, Physical review letters.

[18]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[19]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[20]  Zhimin Zhang,et al.  Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media , 2010, J. Comput. Phys..

[21]  Min Qiu,et al.  Super-reflection and cloaking based on zero index metamaterial , 2009, 0906.5543.

[22]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[23]  Daniel Onofrei,et al.  Broadband exterior cloaking. , 2009, Optics express.

[24]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[25]  Habib Ammari,et al.  Enhancement of Near Cloaking Using Generalized Polarization Tensors Vanishing Structures. Part I: The Conductivity Problem , 2011, Communications in Mathematical Physics.

[26]  Josselin Garnier,et al.  Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions , 2011 .

[27]  Zixian Liang,et al.  The physical picture and the essential elements of the dynamical process for dispersive cloaking structures , 2008 .

[28]  Matti Lassas,et al.  Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics , 2009, SIAM Rev..

[29]  Alexander L. Gaeta,et al.  Demonstration of Temporal Cloaking , 2011 .

[30]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[31]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[32]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[33]  S. Guenneau,et al.  The colours of cloaks , 2011 .

[34]  Wei Yang,et al.  Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks , 2012, J. Comput. Phys..

[35]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Yunqing Huang,et al.  Mathematical Simulation of Cloaking Metamaterial Structures , 2012 .

[37]  Naoki Okada,et al.  FDTD Modeling of a Cloak with a Nondiagonal Permittivity Tensor , 2012 .

[38]  S. Lanteri,et al.  Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media. , 2013 .

[39]  Susanne C. Brenner,et al.  A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations , 2007, Math. Comput..

[40]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[41]  Y. Hao,et al.  Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures. , 2008, Optics express.

[42]  Jingzhi Li,et al.  Enhanced approximate cloaking by SH and FSH lining , 2012 .

[43]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[44]  Gang Bao,et al.  An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures , 2010, Math. Comput..

[45]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[46]  Habib Ammari,et al.  Enhancement of Near Cloaking for the Full Maxwell Equations , 2012, SIAM J. Appl. Math..

[47]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Hoai-Minh Nguyen Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking , 2011, 1109.6583.

[49]  J. Cui,et al.  HODGE DECOMPOSITION FOR DIVERGENCE-FREE VECTOR FIELDS AND TWO-DIMENSIONAL MAXWELL’S EQUATIONS , 2012 .

[50]  Long Chen,et al.  Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations , 2011, Math. Comput..

[51]  Habib Ammari,et al.  Communications in Mathematical Physics Enhancement of Near-Cloaking . Part II : The Helmholtz Equation , 2013 .

[52]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .