Reliable Transiently-Powered Communication

Frequent power failures can introduce significant packet losses during communication among energy harvesting batteryless wireless sensors. Nodes should be aware of the energy level of their neighbors to guarantee the success of communication and avoid wasting energy. This paper presents TRAP (TRAnsiently-powered Protocol) that allows nodes to communicate only if the energy availability on both sides of the communication channel is sufficient before packet transmission. TRAP relies on a novel modulator circuit, which operates without microcontroller intervention and transmits the energy status almost for free over the radiofrequency backscatter channel. Our experimental results showed that TRAP avoids failed transmissions introduced by the power failures and ensures reliable intermittent communication among batteryless sensors.

[1]  K. Yıldırım,et al.  Persistent Timekeeping Using Harvested Power Measurements , 2021, SenSys.

[2]  D. Brunelli,et al.  Zero Power Energy-Aware Communication for Transiently-Powered Sensing Systems , 2020, ENSsys@SenSys.

[3]  Joshua R. Smith,et al.  Advances and Open Problems in Backscatter Networking , 2020, GetMobile Mob. Comput. Commun..

[4]  Wen-Qin Wang,et al.  Ambient Backscatter Communication With Frequency Diverse Array for Enhanced Channel Capacity and Detection Performance , 2020, IEEE Sensors Journal.

[5]  Dong Li,et al.  Backscatter Communication via Harvest-Then-Transmit Relaying , 2020, IEEE Transactions on Vehicular Technology.

[6]  Abu Bakar,et al.  Time-sensitive Intermittent Computing Meets Legacy Software , 2020, ASPLOS.

[7]  Josiah D. Hester,et al.  Reliable Timekeeping for Intermittent Computing , 2020, ASPLOS.

[8]  H. Desai,et al.  Camaroptera: a Batteryless Long-Range Remote Visual Sensing System , 2019, ENSsys@SenSys.

[9]  Tapani Ristaniemi,et al.  Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading , 2019, EURASIP Journal on Wireless Communications and Networking.

[10]  Tapani Ristaniemi,et al.  Applications of Backscatter Communications for Healthcare Networks , 2019, IEEE Network.

[11]  Brandon Lucia,et al.  Transactional concurrency control for intermittent, energy-harvesting computing systems , 2019, PLDI.

[12]  Geoffrey Ye Li,et al.  An Overview on Backscatter Communications , 2019, J. Commun. Inf. Networks.

[13]  Przemyslaw Pawelczak,et al.  Multi-hop Backscatter Tag-to-Tag Networks , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[14]  Przemyslaw Pawelczak,et al.  InK: Reactive Kernel for Tiny Batteryless Sensors , 2018, SenSys.

[15]  Abraham O. Fapojuwo,et al.  Sum-Throughput Maximization in Wireless Sensor Networks With Radio Frequency Energy Harvesting and Backscatter Communication , 2018, IEEE Sensors Journal.

[16]  Petar M. Djuric,et al.  BARNET: Towards Activity Recognition Using Passive Backscattering Tag-to-Tag Network , 2018, MobiSys.

[17]  Samir R. Das,et al.  Design and Evaluation of “BTTN”: A Backscattering Tag-to-Tag Network , 2018, IEEE Internet of Things Journal.

[18]  Ying-Chang Liang,et al.  Cooperative Ambient Backscatter Communications for Green Internet-of-Things , 2018, IEEE Internet of Things Journal.

[19]  Jacob Sorber,et al.  Flicker: Rapid Prototyping for the Batteryless Internet-of-Things , 2017, SenSys.

[20]  Brandon Lucia,et al.  Alpaca: intermittent execution without checkpoints , 2017, Proc. ACM Program. Lang..

[21]  Aggelos Bletsas,et al.  Multistatic Scatter Radio Sensor Networks for Extended Coverage , 2017, IEEE Transactions on Wireless Communications.

[22]  Shantanu Chakrabartty,et al.  Self-Powered Timekeeping and Synchronization Using Fowler–Nordheim Tunneling-Based Floating-Gate Integrators , 2017, IEEE Transactions on Electron Devices.

[23]  Luca Benini,et al.  Hibernus++: A Self-Calibrating and Adaptive System for Transiently-Powered Embedded Devices , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24]  Thiemo Voigt,et al.  LoRea: A Backscatter Architecture that Achieves a Long Communication Range , 2016, SenSys.

[25]  Brandon Lucia,et al.  Chain: tasks and channels for reliable intermittent programs , 2016, OOPSLA.

[26]  Mohammad Rostami,et al.  Enabling Practical Backscatter Communication for On-body Sensors , 2016, SIGCOMM.

[27]  Amir Rahmati,et al.  Persistent Clocks for Batteryless Sensing Devices , 2016, ACM Trans. Embed. Comput. Syst..

[28]  Luca Benini,et al.  Graceful Performance Modulation for Power-Neutral Transient Computing Systems , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[29]  Davide Brunelli,et al.  A smart sensor for precision agriculture powered by microbial fuel cells , 2016, 2016 IEEE Sensors Applications Symposium (SAS).

[30]  Aggelos Bletsas,et al.  Sensitive and Efficient RF Harvesting Supply for Batteryless Backscatter Sensor Networks , 2016, IEEE Transactions on Microwave Theory and Techniques.

[31]  Joshua R. Smith,et al.  BLISP: Enhancing backscatter radio with active radio for computational RFIDs , 2016, 2016 IEEE International Conference on RFID (RFID).

[32]  Alex S. Weddell,et al.  Approaches to Transient Computing for Energy Harvesting Systems: A Quantitative Evaluation , 2015, ENSsys@SenSys.

[33]  Sachin Katti,et al.  BackFi: High Throughput WiFi Backscatter , 2015, SIGCOMM.

[34]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[35]  Shantanu Chakrabartty,et al.  Scavenging thermal-noise energy for implementing long-term self-powered CMOS timers , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[36]  Sunanda Roy,et al.  A Quad-Band Stacked Hybrid Ambient RF-Solar Energy Harvester With Higher RF-to-DC Rectification Efficiency , 2021, IEEE Access.

[37]  Marco Zimmerling,et al.  Bootstrapping Battery-free Wireless Networks: Efficient Neighbor Discovery and Synchronization in the Face of Intermittency , 2021, NSDI.

[38]  Hong Wen,et al.  The Efficient BackFi Transmission Design in Ambient Backscatter Communication Systems for IoT , 2019, IEEE Access.