Molecular Architecture of a Eukaryotic Translational Initiation

[1]  Jon R Lorsch,et al.  The molecular mechanics of eukaryotic translation. , 2003, Annual review of biochemistry.

[2]  V. Ramakrishnan,et al.  Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome , 2009, Nature Structural &Molecular Biology.

[3]  N. Ban,et al.  Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6 , 2011, Science.

[4]  C. Hellen,et al.  The joining of ribosomal subunits in eukaryotes requires eIF5B , 2000, Nature.

[5]  A. Kelley,et al.  The Mechanism for Activation of GTP Hydrolysis on the Ribosome , 2010, Science.

[6]  Mikkel A. Algire,et al.  Development and characterization of a reconstituted yeast translation initiation system. , 2002, RNA.

[7]  R. Jackson,et al.  The mechanism of eukaryotic translation initiation and principles of its regulation , 2010, Nature Reviews Molecular Cell Biology.

[8]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[9]  J. Lorsch,et al.  rRNA Suppressor of a Eukaryotic Translation Initiation Factor 5B/Initiation Factor 2 Mutant Reveals a Binding Site for Translational GTPases on the Small Ribosomal Subunit , 2008, Molecular and Cellular Biology.

[10]  N. Ban,et al.  Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1 , 2011, Science.

[11]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[12]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[13]  Jon R Lorsch,et al.  GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. , 2004, Journal of molecular biology.

[14]  J. Ballesta,et al.  The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. , 1996, Progress in nucleic acid research and molecular biology.

[15]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[16]  Stephen K. Burley,et al.  X-Ray Structures of the Universal Translation Initiation Factor IF2/eIF5B Conformational Changes on GDP and GTP Binding , 2000, Cell.

[17]  Jon R Lorsch,et al.  The mechanism of eukaryotic translation initiation: new insights and challenges. , 2012, Cold Spring Harbor perspectives in biology.

[18]  D. Tollervey,et al.  Proof reading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits , 2012, Nature Structural &Molecular Biology.

[19]  David S. Tourigny,et al.  Elongation Factor G Bound to the Ribosome in an Intermediate State of Translocation , 2013, Science.

[20]  J. Lorsch,et al.  Reconstitution of yeast translation initiation. , 2007, Methods in enzymology.

[21]  J. Lorsch,et al.  Kinetic analysis of late steps of eukaryotic translation initiation. , 2009, Journal of molecular biology.

[22]  E. Hurt,et al.  Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits , 2009, Molecular microbiology.

[23]  S. Burley,et al.  Uncoupling of Initiation Factor eIF5B/IF2 GTPase and Translational Activities by Mutations that Lower Ribosome Affinity , 2002, Cell.

[24]  S. Burley,et al.  Engaging the ribosome: universal IFs of translation. , 2001, Trends in biochemical sciences.

[25]  Jon R Lorsch,et al.  A mechanistic overview of translation initiation in eukaryotes , 2012, Nature Structural &Molecular Biology.

[26]  Johannes Söding,et al.  Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution , 2010, Proceedings of the National Academy of Sciences.

[27]  G. Wagner,et al.  Translation initiation: structures, mechanisms and evolution , 2004, Quarterly Reviews of Biophysics.

[28]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[29]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[30]  Leonardo G. Trabuco,et al.  Applications of the molecular dynamics flexible fitting method. , 2011, Journal of structural biology.

[31]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[32]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[33]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[34]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[35]  B. Strunk,et al.  A Translation-Like Cycle Is a Quality Control Checkpoint for Maturing 40S Ribosome Subunits , 2012, Cell.

[36]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[37]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[38]  Joachim Frank,et al.  The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli , 2005, Cell.

[39]  J. Lorsch,et al.  Interaction between Eukaryotic Initiation Factors 1A and 5B Is Required for Efficient Ribosomal Subunit Joining* , 2006, Journal of Biological Chemistry.