MOSFET Performance Scaling—Part I: Historical Trends

A simple analytical model that describes MOSFET operation in saturation from subthreshold to strong inversion is used to derive a new formulation of the intrinsic switching delay of the transistor. The proposed model follows the scaling trend of experimental ring-oscillator data better than the conventional CV/I metric. The historical trend of MOSFET performance scaling is examined, and it is shown that the continuous increase of the carrier velocity in the channel has been the main driver for the improved transistor performance with scaling. The dependence of velocity and mobility in recent strain-engineered devices is studied based on published experimental data, and a theory is proposed to justify this dependence. It is shown that the virtual-source velocity depends on low-field mobility more strongly than what was previously believed, in spite of the fact that state-of-the-art MOSFETs operate at 60%-65% of their ballistic limit. These observations will be used in Part II of this paper to explore the tradeoffs between key device parameters in order for the commensurate scaling of the device performance with its dimensional scaling to continue in the future high-performance CMOS generations.

[1]  I. Chen,et al.  A scaled 1.8 V, 0.18 /spl mu/m gate length CMOS technology: device design and reliability considerations , 1995, Proceedings of International Electron Devices Meeting.

[2]  Robert W. Dutton,et al.  Dopant profile and gate geometric effects on polysilicon gate depletion in scaled MOS , 2002 .

[3]  Osama M. Nayfeh,et al.  Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations , 2006, IBM J. Res. Dev..

[4]  J. Kavalieros,et al.  100 nm gate length high performance/low power CMOS transistor structure , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[5]  M. Uchida,et al.  Performance Enhancement of pMOSFETs Depending on Strain, Channel Direction, and Material , 2005, 2005 International Conference On Simulation of Semiconductor Processes and Devices.

[6]  S. Narasimha,et al.  A high performance 90nm SOI technology with 0.992 /spl mu/m2 6T-SRAM cell , 2002, Digest. International Electron Devices Meeting,.

[7]  G. Reimbold,et al.  Electron mobility enhancement in uniaxially strained MOSFETs: Extraction of the effective mass variation , 2006, 2006 European Solid-State Device Research Conference.

[8]  E. Crabbe,et al.  A high-performance sub-0.25 /spl mu/m CMOS technology with multiple thresholds and copper interconnects , 1998, 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No.98CH36216).

[9]  T. Noguchi,et al.  65 nm CMOS technology (CMOS5) with high density embedded memories for broadband microprocessor applications , 2002, Digest. International Electron Devices Meeting,.

[10]  M. Silberstein,et al.  A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors , 2003, IEEE International Electron Devices Meeting 2003.

[11]  T. Kobayashi,et al.  Two-dimensional analysis of velocity overshoot effects in ultrashort-channel Si MOSFET's , 1985, IEEE Transactions on Electron Devices.

[12]  R. Chapman,et al.  Oxide thickness dependence of inverter delay and device reliability for 0.25 /spl mu/m CMOS technology , 1993, Proceedings of IEEE International Electron Devices Meeting.

[13]  D. Mocuta,et al.  High performance 65 nm SOI technology with dual stress liner and low capacitance SRAM cell , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[14]  J. Koga,et al.  Ultra Low Voltage Operations in Bulk CMOS Logic Circuits with Dopant Segregated Schottky Source/Drain Transistors , 2006, 2006 International Electron Devices Meeting.

[15]  L. Black,et al.  Stress memorization in high-performance FDSOI devices with ultra-thin silicon channels and 25nm gate lengths , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[16]  D.A. Antoniadis,et al.  Transistor Performance Scaling: The Role of Virtual Source Velocity and Its Mobility Dependence , 2006, 2006 International Electron Devices Meeting.

[17]  N. Planes,et al.  High density and high speed SRAM bit-cells and ring oscillators due to laser annealing for 45nm bulk CMOS , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[18]  R. Chapman,et al.  High performance sub-half micron CMOS using rapid thermal processing , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[19]  Y.H. Kim,et al.  Integration of Local Stress Techniques with Strained-Si Directly on Insulator (SSDOI) Substrates , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[20]  S. Narasimha,et al.  High Performance 45-nm SOI Technology with Enhanced Strain, Porous Low-k BEOL, and Immersion Lithography , 2006, 2006 International Electron Devices Meeting.

[21]  Horng-Chih Lin,et al.  Correlating drain-current with strain-induced mobility in nanoscale strained CMOSFETs , 2006, IEEE Electron Device Letters.

[22]  P. Bai,et al.  A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 /spl mu/m/sup 2/ SRAM cell , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[23]  D. A. Bell,et al.  0.5 micron CMOS for high performance at 3.3 V , 1988, Technical Digest., International Electron Devices Meeting.

[24]  A. Khakifirooz,et al.  Scalability of hole mobility enhancement in biaxially strained ultrathin body SOI , 2006, IEEE Electron Device Letters.

[25]  S. Narasimha,et al.  Hole Transport in Nanoscale p-type MOSFET SOI Devices with High Strain , 2007, 2007 65th Annual Device Research Conference.

[26]  M. Hussein,et al.  An enhanced 130 nm generation logic technology featuring 60 nm transistors optimized for high performance and low power at 0.7 - 1.4 V , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[27]  K. Natori,et al.  Ballistic MOSFET reproduces current-voltage characteristics of an experimental device , 2002, IEEE Electron Device Letters.

[28]  C. Auth,et al.  Delaying forever: Uniaxial strained silicon transistors in a 90nm CMOS technology , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[29]  A 45 nm gate length high performance SOI transistor for 100 nm CMOS technology applications , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[30]  N. Cave,et al.  A versatile 0.13 /spl mu/m CMOS platform technology supporting high performance and low power applications , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[31]  Edward J. Nowak,et al.  High-performance sub-0.08 /spl mu/m CMOS with dual gate oxide and 9.7 ps inverter delay , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[32]  J. Y. Cheng,et al.  A 0.13 /spl mu/m CMOS technology with 193 nm lithography and Cu/low-k for high performance applications , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[33]  R. H. Yan,et al.  High Performance 0.1 μm CMOS Devices , 1994 .

[34]  S. Wada,et al.  A high performance 0.12 /spl mu/m CMOS with manufacturable 0.18 /spl mu/m technology , 2001, 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184).

[35]  Yu Cao,et al.  New Generation of Predictive Technology Model for Sub-45 nm Early Design Exploration , 2006, IEEE Transactions on Electron Devices.

[36]  S. Miska,et al.  Title , 2014, Neuromuscular Disorders.

[37]  D. Esseni,et al.  Multi-Subband-Monte-Carlo investigation of the mean free path and of the kT layer in degenerated quasi ballistic nanoMOSFETs , 2006, 2006 International Electron Devices Meeting.

[38]  Y. Tateshita,et al.  High-Performance and Low-Power CMOS Device Technologies Featuring Metal/High-k Gate Stacks with Uniaxial Strained Silicon Channels on (100) and (110) Substrates , 2006, 2006 International Electron Devices Meeting.

[39]  J. Sudijono,et al.  Novel Enhanced Stressor with Graded Embedded SiGe Source/Drain for High Performance CMOS Devices , 2006, 2006 International Electron Devices Meeting.

[40]  I. Chen,et al.  A sub-0.1 /spl mu/m gate length CMOS technology for high performance (1.5 V) and low power (1.0 V) , 1996, International Electron Devices Meeting. Technical Digest.

[41]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[42]  H. Wong,et al.  Metrics for performance benchmarking of nanoscale Si and carbon nanotube FETs including device nonidealities , 2006, IEEE Transactions on Electron Devices.

[43]  L. T. Su,et al.  A study of deep-submicron MOSFET scaling based on experiment and simulation , 1995 .

[44]  I. Chen,et al.  A 0.10 /spl mu/m gate length CMOS technology with 30 /spl Aring/ gate dielectric for 1.0 V-1.5 V applications , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[45]  M. Sherony,et al.  High performance 0.18 /spl mu/m SOI CMOS technology , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[46]  M. Lundstrom On the mobility versus drain current relation for a nanoscale MOSFET , 2001, IEEE Electron Device Letters.

[47]  Yuan Taur,et al.  High performance 0.1 /spl mu/m CMOS devices with 1.5 V power supply , 1993, Proceedings of IEEE International Electron Devices Meeting.

[48]  H. Ohta,et al.  High performance 30 nm gate bulk CMOS for 45 nm node with /spl Sigma/-shaped SiGe-SD , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[49]  Yu Cao,et al.  New paradigm of predictive MOSFET and interconnect modeling for early circuit simulation , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[50]  Shaofeng Yu,et al.  On the Relationship Between Carrier Mobility and Velocity in sub-50 nm MOSFETs via Calibrated Monte Carlo Simulation , 2004 .

[51]  G. Ghibaudo,et al.  Improved split C-V method for effective mobility extraction in sub-0.1-/spl mu/m Si MOSFETs , 2004, IEEE Electron Device Letters.

[52]  S. Aur,et al.  A 1.2V, sub-0.09 /spl mu/m gate length CMOS technology , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[53]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[54]  T. Sugii,et al.  High-Performance Low Operation Power Transistor for 45nm Node Universal Applications , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[55]  J. Gill,et al.  High performance 65 nm SOI technology with enhanced transistor strain and advanced-low-K BEOL , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[56]  M. Hussein,et al.  A 130 nm generation logic technology featuring 70 nm transistors, dual Vt transistors and 6 layers of Cu interconnects , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[57]  Ih-Chin Chen,et al.  A study of design/process dependence of 0.25 /spl mu/m gate length CMOS , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[58]  P. Bai,et al.  A high performance 180 nm generation logic technology , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[59]  P. Bai,et al.  An advanced low power, high performance, strained channel 65nm technology , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[60]  Kah-Wee Ang,et al.  Carrier Backscattering Characteristics of Strained N-MOSFET Featuring Silicon-Carbon Source/Drain Regions , 2006, 2006 European Solid-State Device Research Conference.

[61]  T. Miyashita,et al.  45-nm node CMOS integration with a novel STI structure and full-NCS/Cu interlayers for low-operation-power (lop) applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[62]  C.H. Diaz,et al.  Separation of channel backscattering coefficients in nanoscale MOSFETs , 2004, IEEE Transactions on Electron Devices.

[63]  E. Yoshida,et al.  Performance Boost using a New Device Design Methodology Based on Characteristic Current for Low-Power CMOS , 2006, 2006 International Electron Devices Meeting.

[64]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[65]  T. Ghani,et al.  A high performance 0.25 /spl mu/m logic technology optimized for 1.8 V operation , 1996, International Electron Devices Meeting. Technical Digest.

[66]  T. Sugii,et al.  High performance 25 nm gate CMOSFETs for 65 nm node high speed MPUs , 2003, IEEE International Electron Devices Meeting 2003.

[67]  S. Datta,et al.  nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs , 2003 .

[68]  S. Takagi,et al.  Re-examination of subband structure engineering in ultra-short channel MOSFETs under ballistic carrier transport , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[69]  G. Burbach,et al.  Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[70]  D. Greenlaw,et al.  Integration and optimization of embedded-sige, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[71]  D. Lea,et al.  High speed 45nm gate length CMOSFETs integrated into a 90nm bulk technology incorporating strain engineering , 2003, IEEE International Electron Devices Meeting 2003.

[72]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[73]  Bich-Yen Nguyen,et al.  A high-performance sub-half micron CMOS technology for fast SRAMs , 1989, International Technical Digest on Electron Devices Meeting.

[74]  M. Rodder,et al.  A 1.2 V, 0.1 /spl mu/m gate length CMOS technology: design and process issues , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[75]  M. Belyansky,et al.  Stress Proximity Technique for Performance Improvement with Dual Stress Liner at 45nm Technology and Beyond , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[76]  M. Lundstrom,et al.  A compact scattering model for the nanoscale double-gate MOSFET , 2002 .

[77]  D. Antoniadis,et al.  Investigating the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress , 2001, IEEE Electron Device Letters.

[78]  S. Veeraraghavan,et al.  A high performance 1.5 V, 0.10 /spl mu/m gate length CMOS technology with scaled copper metallization , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[79]  Percy V. Gilbert,et al.  A 0.25 /spl mu/m CMOS technology with 45 /spl Aring/ NO-nitrided oxide , 1995, Proceedings of International Electron Devices Meeting.

[80]  D. Antoniadis,et al.  On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit? , 2001, IEEE Electron Device Letters.

[81]  K. Ohuchi,et al.  Issues and optimization of millisecond anneal process for 45 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[82]  S. Tyagi,et al.  High performance 35nm L/sub GATE/ CMOS transistors featuring NiSi metal gate (FUSI), uniaxial strained silicon channels and 1.2nm gate oxide , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[83]  M. Jurczak,et al.  Experimental and comparative investigation of low and high field transport in substrate- and process-induced strained nanoscaled MOSFETs , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[84]  C. Laviron,et al.  0.248/spl mu/m/sup 2/ and 0.334/spl mu/m/sup 2/ conventional bulk 6T-SRAM bit-cells for 45nm node low cost - general purpose applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[85]  F. Mehrad,et al.  45-nm node NiSi FUSI on nitrided oxide bulk CMOS fabricated by a novel integration process , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[86]  L. Selmi,et al.  Understanding quasi-ballistic transport in nano-MOSFETs: part I-scattering in the channel and in the drain , 2005, IEEE Transactions on Electron Devices.

[87]  E.J. Nowak,et al.  The effective drive current in CMOS inverters , 2002, Digest. International Electron Devices Meeting,.

[88]  P. Bai,et al.  A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 /spl mu/m/sup 2/ SRAM cell , 2002, Digest. International Electron Devices Meeting,.

[89]  G. Ghibaudo,et al.  In-depth characterization of the hole mobility in 50-nm process-induced strained MOSFETs , 2005, IEEE Electron Device Letters.

[90]  M. Weybright,et al.  High performance and low power transistors integrated in 65nm bulk CMOS technology , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[91]  Mong-Song Liang,et al.  High-Performance PMOS Devices on (110)/<111'> Substrate/Channel with Multiple Stressors , 2006, 2006 International Electron Devices Meeting.

[92]  N. Horiguchi,et al.  Technology booster using strain-enhancing laminated SiN (SELS) for 65nm node HP MPUs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[93]  K. Saraswat,et al.  Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[94]  Chih-Sheng Chang,et al.  Temperature dependent channel backscattering coefficients in nanoscale MOSFETs , 2002, Digest. International Electron Devices Meeting,.