The prediction of mineral solubilities in natural waters: the NaKMgCaClSO4H2O system from zero to high concentration at 25° C

Abstract A chemical model of the seawater system, NaKMgCaClSO 4 H 2 O, is developed for predicting mineral solubilities in brines from zero to high ionic strengths. The calculated solubilities are shown to be in agreement with the experimental data from gypsum saturation ( I m ) to bischofite saturation (I > 20 m). The model utilizes activity coefficient expressions recently developed by Pitzer and co-workers and an algorithm for rapidly identifying the coexisting phases and their composition at equilibrium. The activity coefficient expressions are parameterized using binary and ternary system solubility and osmotic data. The results indicate that a free energy model defined by binary and ternary system data will accurately predict solubilities in more complex systems. The algorithm for solving the general chemical equilibrium problem is briefly discussed. The method can be used to model systems with an arbitrary number of possible non-ideal solution phases. The iterative procedure is guaranteed to converge and has been found to be efficient and easy to implement. Calculated phase diagrams associated with the seawater system are compared to experimental data. Our calculations are within experimental accuracy whereas the prediction of other seawater models are in substantial disagreement with the data even at low concentration. The calculation of evaporation sequences is also briefly discussed and qualitatively compared to field data. The mineral assemblages predicted by this method are in substantially better agreement with core samples than the sequences predicted by phase diagram methods ( Braitsch , 1971), which do not explicitly include the Ca component.

[1]  B. Jones,et al.  WATEQF-A fortran IV version of WATEQ, A computer program for calculating chemical equilibrium of natural waters , 1976 .

[2]  J. Wood Thermodynamics of brine-salt equilibria—I. The systems NaCl-KCl-MgCl2-CaCl2-H2O and NaCl-MgSO4-H2O at 25°C , 1975 .

[3]  James S. Johnson,et al.  Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25.deg.. III. Treatment with the ions as components , 1970 .

[4]  O. Braitsch Salt Deposits Their Origin and Composition , 1971 .

[5]  E. H ckel,et al.  Zur Theorie der Elektrolyte , 1924 .

[6]  E. A. Guggenheim L. The specific thermodynamic properties of aqueous solutions of strong electrolytes , 1935 .

[7]  J. Block,et al.  Calcium sulfate-sodium sulfate-sodium chloride-water system at 25.deg. to 100.deg. , 1968 .

[8]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes , 1974 .

[9]  Gary A. Kochenberger,et al.  Computational aspects of cutting-plane algorithms for geometric programming problems , 1977, Math. Program..

[10]  W. L. Marshall,et al.  Thermodynamics of Calcium Sulfate Dihydrate in Aqueous Sodium Chloride Solutions, 0-110°1,2 , 1966 .

[11]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[12]  K. Pitzer,et al.  Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent , 1973 .

[13]  R. Garrels,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications , 1969 .

[14]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[15]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes , 1974 .

[16]  H. Eugster,et al.  Evaporation of Seawater: Calculated Mineral Sequences , 1980, Science.

[17]  L. Hardie,et al.  THE GYPSUM-ANHYDRITE EQUILIBRIUM AT ONE ATMOSPHERE PRESSURE1 , 2007 .

[18]  E. A. Guggenheim Applications of Statistical Mechanics , 1966 .

[19]  W. G. McMillan,et al.  The Statistical Thermodynamics of Multicomponent Systems , 1945 .

[20]  Otto Biedel XIX. Chemisch-mineralogisches Profil des älteren Salzgebirges im Berlepschbergwerk bei Staßfurt. , 1912 .

[21]  H. Friedman,et al.  Ionic Solution Theory , 1962 .

[22]  J. D'ans Die Lösungsgleichgewichte der Systeme der Salz ozeanischer Salzablagerung. , 1933 .

[23]  Gösta. Åkerlöf,et al.  A Study of the Solubility of Strong Electrolytes in Concentrated Solutions , 1934 .

[24]  Mordecai Avriel,et al.  Complementary Geometric Programming , 1970 .

[25]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[26]  Yousif K. Kharaka,et al.  SOLMNEQ: Solution-mineral equilibrium computations , 1973 .

[27]  J. N. Brönsted STUDIES ON SOLUBILITY. IV. THE PRINCIPLE OF THE SPECIFIC INTERACTION OF IONS , 1922 .

[28]  A. Lerman Model of chemical evolution of a chloride lake—The Dead Sea , 1967 .

[29]  R. Garrels,et al.  A chemical model for sea water at 25 degrees C and one atmosphere total pressure , 1962 .

[30]  M. Whitfield An improved specific interaction model for seawater at 25°C and 1 atmosphere total pressure , 1975 .

[31]  J. Mayer The Theory of Ionic Solutions , 1950 .

[32]  G. Scatchard Excess free energy and related properties of solutions containing electrolytes , 1968 .

[33]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. V. effects of higher-order electrostatic terms , 1975 .

[34]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[35]  M. Whitfield A chemical model for the major electrolyte component of seawater based on the Brønsted-Guggenheim hypothesis , 1973 .

[36]  J. Wills,et al.  Ternary Systems. XXIV. Calcium Sulfate, Sodium Sulfate and Water , 1938 .

[37]  H. Helgeson,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions - I. Thermodynamic relations , 1968 .

[38]  Philip E. Gill,et al.  Numerical methods for constrained optimization , 1974 .

[39]  B. Jones,et al.  WATEQ: A COMPUTER PROGRAM FOR CALCULATING CHEMICAL EQUILIBRIA OF NATURAL WATERS , 1973 .

[40]  Thomas A. Jones,et al.  Calculation of mass transfer in geochemical processes involving aqueous solutions , 1970 .

[41]  R. S. Dembo Current state of the art of algorithms and computer software for geometric programming , 1977 .

[42]  B. Jones,et al.  Ion association in natural brines , 1969 .

[43]  G. Scatchard Concentrated Solutions of Strong Electrolytes. , 1936 .