Linear Assignment Problems and Extensions

Assignment problems deal with the question how to assign n items (e.g. jobs) to n machines (or workers) in the best possible way. They consist of two components: the assignment as underlying combinatorial structure and an objective function modeling the ”best way”.

[1]  Dimitri P. Bertsekas,et al.  Parallel Asynchronous Hungarian Methods for the Assignment Problem , 1993, INFORMS J. Comput..

[2]  Liqun Qi,et al.  On facets of the three-index assignment polytope , 1992, Australas. J Comb..

[3]  Aubrey B. Poore,et al.  A Numerical Study of Some Data Association Problems Arising in Multitarget Tracking , 1994 .

[4]  Jerome M. Kurtzberg,et al.  On Approximation Methods for the Assignment Problem , 1962, JACM.

[5]  Donald L. Miller,et al.  Solution of large dense transportation problems using a parallel primal algorithm , 1990 .

[6]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[7]  P. Hall On Representatives of Subsets , 1935 .

[8]  P. Camerini,et al.  On improving relaxation methods by modified gradient techniques , 1975 .

[9]  Mustafa Akgül,et al.  A Genuinely Polynomial Primal Simplex Algorithm for the Assignment Problem , 1993, Discret. Appl. Math..

[10]  Ming S. Hung,et al.  Technical Note - A Polynomial Simplex Method for the Assignment Problem , 1983, Oper. Res..

[11]  Andrew V. Goldberg,et al.  An efficient cost scaling algorithm for the assignment problem , 1995, Math. Program..

[12]  Egon Balas,et al.  A parallel shortest augmenting path algorithm for the assignment problem , 1991, JACM.

[13]  K. G. Ramakrishnan,et al.  An Approximate Dual Projective Algorithm for Solving Assignment Problems , 1991, Network Flows And Matching.

[14]  Hossam A. Zaki A comparison of two algorithms for the assignment problem , 1995, Comput. Optim. Appl..

[15]  Ewan S. Page A Note on Assignment Problems , 1963, Comput. J..

[16]  Andrew V. Goldberg,et al.  Sublinear-time parallel algorithms for matching and related problems , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[17]  D. Bertsekas The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .

[18]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[19]  R. Euler Odd cycles and a class of facets of the axial 3-index assignment polytope , 1987 .

[20]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[21]  Egon Balas,et al.  An Algorithm for the Three-Index Assignment Problem , 1991, Oper. Res..

[22]  Carl W. Lee,et al.  Transportation problems which can be solved by the use of hirsch-paths for the dual problems , 1987, Math. Program..

[23]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[24]  Paolo Toth,et al.  Balanced optimization problems , 1984 .

[25]  Dimitri P. Bertsekas,et al.  Parallel computing in network optimization , 1994 .

[26]  Dimitri P. Bertsekas,et al.  A new algorithm for the assignment problem , 1981, Math. Program..

[27]  Michel Balinski,et al.  Maximum matchings in bipartite graphs via strong spanning trees , 1991, Networks.

[28]  M. Akgül,et al.  A dual feasible forest algorithm for the linear assignment problem , 1991 .

[29]  Kurt Mehlhorn,et al.  Computing a Maximum Cardinality Matching in a Bipartite Graph in Time O(^1.5 sqrt m/log n) , 1991, Inf. Process. Lett..

[30]  Aubrey B. Poore,et al.  Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking , 1994, Comput. Optim. Appl..

[31]  David Avis,et al.  The Probabilistic Analysis of a Heuristic for the Assignment Problem , 1988, SIAM J. Comput..

[32]  Panos M. Pardalos,et al.  On the expected optimal value of random assignment problems: Experimental results and open questions , 1993, Comput. Optim. Appl..

[33]  F. Glover Maximum matching in a convex bipartite graph , 1967 .

[34]  Mustafa Akgül,et al.  A sequential dual simplex algorithm for the linear assignment problem , 1988 .

[35]  Konstantinos Paparrizos,et al.  An infeasible (exterior point) simplex algorithm for assignment problems , 1991, Math. Program..

[36]  Dimitri P. Bertsekas,et al.  Chapter 5 Parallel computing in network optimization , 1995 .

[37]  Gerhard J. Woeginger,et al.  Three-dimensional Axial Assignment Problems with Decomposable Cost Coefficients , 1996, Discret. Appl. Math..

[38]  R. Burkard,et al.  Assignment and Matching Problems: Solution Methods with FORTRAN-Programs , 1980 .

[39]  David W. Walkup,et al.  On the Expected Value of a Random Assignment Problem , 1979, SIAM J. Comput..

[40]  E. Roohy-Laleh Improvements in the Theoretical Efficiency of the Network Simplex Method , 1980 .

[41]  Michel X. Goemans,et al.  A Lower Bound on the Expected Cost of an Optimal Assignment , 1993, Math. Oper. Res..

[42]  Mustafa Akgiil A genuinely polynomial primal simplex algorithm for the assignment problem , 1993 .

[43]  Ulrich Pferschy The Random Linear Bottleneck Assignment Problem , 1995, IPCO.

[44]  Gerhard J. Woeginger,et al.  on the Recognition of Permuted Bottleneck Monge Matrices , 1995, Discret. Appl. Math..

[45]  R. Luchsinger Der objektive Nachweis des Geruchsvermögens (Olfacto-Pupillarreflex) , 1945 .

[46]  Andrew V. Goldberg,et al.  On Implementing the Push—Relabel Method for the Maximum Flow Problem , 1997, Algorithmica.

[47]  R. Euler,et al.  Time-tables, Polyhedra and the Greedy Algorithm , 1996, Discret. Appl. Math..

[48]  Michel Balinski,et al.  A competitive (dual) simplex method for the assignment problem , 1986, Math. Program..

[49]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[50]  Alan Frieze,et al.  An Algorithm for Solving 3-Dimensional Assignment Problems with Application to Scheduling a Teaching Practice , 1981 .

[51]  Ming S. Hung,et al.  Solving the Assignment Problem by Relaxation , 1980, Oper. Res..

[52]  W. H. Cunningham,et al.  Theoretical Properties of the Network Simplex Method , 1979, Math. Oper. Res..

[53]  Darwin Klingman,et al.  Threshold assignment algorithm , 1986 .

[54]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[55]  Paolo Toth,et al.  Algorithms and codes for the assignment problem , 1988 .

[56]  Katarína Cechlárová The uniquely solvable bipartite matching problem , 1991, Oper. Res. Lett..

[57]  Yusin Lee,et al.  On very large scale assignment problems , 1994 .

[58]  Konstantinos Paparrizos,et al.  A non-dual signature method for the assignment problem and a generalization of the dual simplex method for the transportation problem , 1988 .

[59]  Robert S. Garfinkel,et al.  Technical Note - An Improved Algorithm for the Bottleneck Assignment Problem , 1971, Oper. Res..

[60]  Gerhard J. Woeginger,et al.  Permuting Matrices to Avoid Forbidden Submatrices , 1995, Discret. Appl. Math..

[61]  Ravindra K. Ahuja,et al.  The Scaling Network Simplex Algorithm , 1992, Oper. Res..

[62]  Stanley E. Bammel,et al.  The number of 9 × 9 latin squares , 1975, Discrete Mathematics.

[63]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[64]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[65]  Konstantinos Paparrizos A relaxation column signature method for assignment problems , 1991 .

[66]  Alexander H. G. Rinnooy Kan,et al.  Average Case Analysis of a Heuristic for the Assignment Problem , 1994, Math. Oper. Res..

[67]  R. Gomory,et al.  A Primal Method for the Assignment and Transportation Problems , 1964 .

[68]  Egon Balas,et al.  Traffic assignment in communication satellites , 1983 .

[69]  Aubrey B. Poore,et al.  Data association problems posed as multidimensional assignment problems: problem formulation , 1993, Defense, Security, and Sensing.

[70]  R. Burkard,et al.  Computational investigations on 3-dimensional axial assignment problems , 1993 .

[71]  Giorgio Gallo,et al.  Network models for vehicle and crew scheduling , 1984 .

[72]  Abraham P. Punnen,et al.  Improved Complexity Bound for the Maximum Cardinality Bottleneck Bipartite Matching Problem , 1994, Discret. Appl. Math..

[73]  Robert E. Tarjan,et al.  Algorithms for Two Bottleneck Optimization Problems , 1988, J. Algorithms.

[74]  V. Srinivasan,et al.  Cost operator algorithms for the transportation problem , 1977, Math. Program..

[75]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[76]  Ronald D. Armstrong,et al.  Solving linear bottleneck assignment problems via strong spanning trees , 1992, Oper. Res. Lett..

[77]  Michel Balinski,et al.  Signature Methods for the Assignment Problem , 1985, Oper. Res..

[78]  Egon Balas,et al.  A PARALLEL SHORTEST PATH ALGORITHM FOR THE ASSIGNMENT PROBLEM , 1989 .

[79]  Darwin Klingman,et al.  The alternating basis algorithm for assignment problems , 1977, Math. Program..

[80]  Paolo Toth,et al.  Algorithm 548: Solution of the Assignment Problem [H] , 1980, TOMS.

[81]  G. Gallo,et al.  A multi-level bottleneck assignment approach to the bus drivers' rostering problem , 1984 .

[82]  Ravindra K. Ahuja,et al.  Applications of network optimization , 1992 .

[83]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[84]  Paolo Toth,et al.  Linear Assignment Problems , 1987 .

[85]  Jia-Yu Shao,et al.  A formula for the number of Latin squares , 1992, Discret. Math..

[86]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[87]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[88]  W. Hager,et al.  Large Scale Optimization : State of the Art , 1993 .

[89]  Fred W. Glover,et al.  Implementation and computational comparisons of primal, dual and primal-dual computer codes for minimum cost network flow problems , 1974, Networks.

[90]  Andrew V. Goldberg,et al.  Finding Minimum-Cost Circulations by Successive Approximation , 1990, Math. Oper. Res..

[91]  O. Gross THE BOTTLENECK ASSIGNMENT PROBLEM , 1959 .

[92]  Panos M. Pardalos,et al.  Large Scale Optimization , 1994 .

[93]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[94]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum cycle mean problems , 1988 .

[95]  Dimitri P. Bertsekas,et al.  Parallel primal-dual methods for the minimum cost flow problem , 1993, Comput. Optim. Appl..

[96]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[97]  William P. Pierskalla,et al.  Letter to the Editor - The Multidimensional Assignment Problem , 1968, Oper. Res..

[98]  Franz Rendl,et al.  Lexicographic bottleneck problems , 1991, Oper. Res. Lett..

[99]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[100]  Kurt Mehlhorn,et al.  Faster algorithms for the shortest path problem , 1990, JACM.

[101]  Rainer E. Burkard,et al.  Weakly admissible transformations for solving algebraic assignment and transportation problems , 1980 .

[102]  Egon Balas,et al.  Linear-Time Separation Algorithms for the Three-Index Assignment Polytope , 1993, Discret. Appl. Math..

[103]  Luc Devroye,et al.  An analysis of a decomposition heuristic for the assignment problem , 1985 .

[104]  J. M. Wein,et al.  Massively parallel auction algorithms for the assignment problem , 1990, [1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation.

[105]  Ulrich Derigs,et al.  The shortest augmenting path method for solving assignment problems — Motivation and computational experience , 1985 .

[106]  Stavros A. Zenios,et al.  On the Massively Parallel Solution of the Assignment Problem , 1991, J. Parallel Distributed Comput..

[107]  Dimitri P. Bertsekas,et al.  Dual coordinate step methods for linear network flow problems , 1988, Math. Program..

[108]  Richard A. Brualdi,et al.  The assignment polytope , 1976, Math. Program..

[109]  Frits C. R. Spieksma,et al.  Approximation Algorithms for Multi-Dimensional Assignment Problems with Decomposable Costs , 1994, Discret. Appl. Math..

[110]  L. Qi,et al.  A NEW FACET CLASS AND A POLYHEDRAL METHOD FOR THE THREE-INDEX ASSIGNMENT PROBLEM , 1994 .

[111]  Richard M. Karp,et al.  An algorithm to solve the m × n assignment problem in expected time O(mn log n) , 1980, Networks.

[112]  R. Karp An Upper Bound on the Expected Cost of an Optimal Assignment , 1987 .

[113]  David W. Walkup,et al.  Matchings in random regular bipartite digraphs , 1980, Discret. Math..

[114]  Dimitri P. Bertsekas,et al.  Parallel synchronous and asynchronous implementations of the auction algorithm , 1991, Parallel Comput..

[115]  Rainer E. Burkard,et al.  Combinatorial optimization in linearly ordered semimodules: A survey , 1982 .

[116]  Mustafa Akgül,et al.  The Linear Assignment Problem , 1992 .

[117]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[118]  Jörg Peters,et al.  The network simplex method on a multiprocessor , 1990, Networks.

[119]  M. Mézard,et al.  On the solution of the random link matching problems , 1987 .

[120]  Andrew V. Goldberg,et al.  On Implementing Push-Relabel Method for the Maximum Flow Problem , 1995, IPCO.

[121]  Aubrey B. Poore,et al.  A New Lagrangian Relaxation Based Algorithm for a Class of Multidimensional Assignment Problems , 1997, Comput. Optim. Appl..

[122]  J. Orlin On the simplex algorithm for networks and generalized networks , 1983 .

[123]  Andrew J. Lazarus,et al.  Certain expected values in the random assignment problem , 1993, Oper. Res. Lett..

[124]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[125]  G. V. Balakin On Random Matrices , 1967 .

[126]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[127]  W. Donath Algorithm and average-value bounds for assignment problems , 1969 .

[128]  Dimitri P. Bertsekas,et al.  Linear network optimization - algorithms and codes , 1991 .

[129]  A. Volgenant Linear and semi-assignment problems: A core oriented approach , 1996, Comput. Oper. Res..

[130]  Franz Rendl,et al.  Minimizing the density of terminal assignments in layout design , 1986 .

[131]  Rainer E. Burkard,et al.  An algebraic approach to assignment problems , 1977, Math. Program..

[132]  B. Neng Zur Erstellung von optimalen Triebfahrzeuglaufplänen , 1981, Z. Oper. Research.

[133]  A. Frieze Complexity of a 3-dimensional assignment problem , 1983 .

[134]  Robert E. Machol Letter to the Editor—An Application of the Assignment Problem , 1961 .

[135]  Ulrich Derigs,et al.  Monge sequences and a simple assignment algorithm , 1986, Discret. Appl. Math..

[136]  P. Carraresi,et al.  An efficient algorithm for the bipartite matching problem , 1986 .

[137]  F. Rendl On the complexity of decomposing matrices arising in satellite communication , 1985 .

[138]  Rainer E. Burkard,et al.  On latin squares and the facial structure of related polytopes , 1986, Discret. Math..

[139]  William H. Cunningham,et al.  A network simplex method , 1976, Math. Program..

[140]  Panos M. Pardalos,et al.  A Parallel Grasp for the Data Association Multidimensional Assignment Problem , 1999 .

[141]  G. Thompson A Recursive Method for Solving Assignment Problems , 1981 .

[142]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[143]  Aubrey B. Poore,et al.  Partitioning Multiple Data Sets: Multidimensional Assignments and Lagrangian Relaxation , 1993, Quadratic Assignment and Related Problems.

[144]  R. Jonker,et al.  Improving the Hungarian assignment algorithm , 1986 .

[145]  D. Magos,et al.  Tabu Search for the planar three-index assignment problem , 1996, J. Glob. Optim..

[146]  Darwin Klingman,et al.  Improved Labeling of L.P. Bases in Networks , 1975 .

[147]  P. Miliotis,et al.  An algorithm for the planar three-index assignment problem , 1994 .

[148]  Konstantinos Paparrizos,et al.  A Dual Forest Algorithm for the Assignment Problem , 1990, Applied Geometry And Discrete Mathematics.

[149]  W. Cunningham,et al.  A primal algorithm for optimum matching , 1978 .

[150]  Paolo Toth,et al.  Primal-dual algrorithms for the assignment problem , 1987, Discret. Appl. Math..

[151]  R. C. Dudding,et al.  Letter to the Editor - Application of Kuhn's Hungarian Assignment Algorithm to Posting Servicemen , 1971, Oper. Res..

[152]  David S. Johnson,et al.  Network Flows and Matching: First DIMACS Implementation Challenge , 1993 .

[153]  Thomas M. Liebling,et al.  Tracking elementary particles near their primary vertex: A combinatorial approach , 1996, J. Glob. Optim..

[154]  W. Brogan Algorithm for Ranked Assignments with Applications to Multiobject Tracking , 1989 .

[155]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.