Single-color centers implanted in diamond nanostructures

The development of material-processing techniques that can be used to generate optical diamond nanostructures containing a single-color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant ( 20nm) to generate nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal prior to device fabrication. Individual NV centers are then mechanically isolated by etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' ( 1µm) implantation of individual NV centers into diamond nanowires as a post-processing step. The high single-photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allowed us to observe sustained photon anti-bunching even at high pump powers.

[1]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[2]  J. Wrachtrup,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[3]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[4]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[5]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[6]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[7]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[8]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[9]  C. Santori,et al.  Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide , 2008, 0811.0328.

[10]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[11]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[12]  F. Jelezko,et al.  Engineering single photon emitters by ion implantation in diamond. , 2009, Applied physics letters.

[13]  W. Pfaff,et al.  Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system , 2010, 1008.4097.

[14]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[15]  F. Schmidt-Kaler,et al.  Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution , 2008 .

[16]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[17]  P. Hemmer,et al.  Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. , 2008, Physical review letters.

[18]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[19]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[20]  Marko Loncar,et al.  Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. , 2008, Optics express.

[21]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[22]  Igor Aharonovich,et al.  Two-level ultrabright single photon emission from diamond nanocrystals. , 2009, Nano letters.

[23]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[24]  Thomas Schenkel,et al.  Chip-scale nanofabrication of single spins and spin arrays in diamond. , 2010, Nano letters.

[25]  Yumin Shen,et al.  Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals , 2008 .

[26]  J. Meijer,et al.  Generation of single color centers by focused nitrogen implantation , 2005 .

[27]  Charles Santori,et al.  Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. , 2009, Optics express.

[28]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[29]  J. Wrachtrup,et al.  Stable single-photon source in the near infrared , 2004 .

[30]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[31]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[32]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[33]  Mats Larsson,et al.  Composite optical microcavity of diamond nanopillar and silica microsphere. , 2009, Nano letters.

[34]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[35]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[36]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[37]  Marko Loncar,et al.  Fabrication of diamond nanowires for quantum information processing applications , 2009, 0908.0352.