Learning and memory in honeybees: from behavior to neural substrates.

Learning and memory in honeybees is analyzed on five levels, using a top-down approach. (a) Observatory learning is applied during navigation and dance communication. (b) Local cues at the feeding site are learned associatively. (c) Classical conditioning of the proboscis extension response to olfactory stimuli provides insight into behavioral, neural, and neuropharmacological mechanisms of associative learning. (d) At the neural level, the pathways coding the conditioned and the unconditioned stimulus are identified. The reinforcing function of the unconditioned stimulus is traced to a particular neuron. (e) At the cellular level, the cAMP pathway is found to be critically involved. Nitric oxide is an essential mediator for the transfer from short- to long-term memory.

[1]  H. Buttel-Reepen Sind die Bienen Reflexmaschinen? : Experimentelle Beiträge zur Biologie der Honigbiene , 1900 .

[2]  G. P. Baerends Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophila campestris Jur , 1941 .

[3]  K. Takeda Classical conditioned response in the honey bee , 1961 .

[4]  K E Grossmann,et al.  Continuous, fixed-ratio, and fixed-interval reinforcement in honey bees. , 1973, Journal of the experimental analysis of behavior.

[5]  L. Squire,et al.  Cerebral protein synthesis inhibition and discrimination training: effect of extent and duration of inhibition. , 1975, Behavioral biology.

[6]  J. Erber,et al.  Retrograde amnesia in honeybees (Apis mellifera carnica). , 1976, Journal of comparative and physiological psychology.

[7]  J. Erber,et al.  Neural correlates of learning in the honeybee , 1981, Trends in Neurosciences.

[8]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[9]  P. Holland,et al.  Behavioral Studies of Associative Learning in Animals , 1982 .

[10]  J. L. Gould,et al.  The Insect Mind: Physics or Metaphysics? , 1982 .

[11]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[12]  M. Bitterman,et al.  Analysis of overshadowing in honeybees. , 1983 .

[13]  H. G. Baker,et al.  Insects as Flower Visitors and Pollinators , 1983 .

[14]  M. Bitterman,et al.  Classical conditioning of proboscis extension in honeybees (Apis mellifera). , 1983, Journal of comparative psychology.

[15]  B. Heinrich Insect foraging energetics , 1983 .

[16]  G. Pyke Optimal Foraging Theory: A Critical Review , 1984 .

[17]  B. Heinrich Learning in Invertebrates , 1984 .

[18]  R. Wehner Astronavigation in insects , 1984 .

[19]  The overlearning-extinction effect and successive negative contrast in honeybees (Apis mellifera). , 1984 .

[20]  C. Abramson Aversive conditioning in honeybees (Apis mellifera) , 1986 .

[21]  P. Schmid-Hempel The influence of reward sequence on flight directionality in bees , 1986, Animal Behaviour.

[22]  J. L. Gould The Locale Map of Honey Bees: Do Insects Have Cognitive Maps? , 1986, Science.

[23]  M. Bitterman,et al.  The US-preexposure effect in honeybees , 1986 .

[24]  J. L. Gould Landmark learning by honey bees , 1987, Animal Behaviour.

[25]  J. L. Gould Honey bees store learned flower-landing behaviour according to time of day , 1987, Animal Behaviour.

[26]  V. Rehder Quantification of the honeybee's proboscis reflex by electromyographic recordings , 1987 .

[27]  Randolf Menzel,et al.  Neuropharmacology of Learning and Memory in Honey Bees , 1988 .

[28]  R. Menzel,et al.  Time-course of memory formation differs in honey bee lines selected for good and poor learning , 1988, Animal Behaviour.

[29]  M. Bitterman,et al.  Compound-component and conditional discrimination of colors and odors by honeybees: Further tests of a continuity model , 1988 .

[30]  T. Laverty,et al.  Flower handling by bumblebees: a comparison of specialists and generalists , 1988, Animal Behaviour.

[31]  M. Bitterman Vertebrate-Invertebrate Comparisons , 1988 .

[32]  M. E. Bitterman,et al.  Learning in honeybees as a function of amount and frequency of reward , 1988 .

[33]  E. Kandel,et al.  cAMP evokes long-term facilitation in Aplysia sensory neurons that requires new protein synthesis. , 1988, Science.

[34]  Randolf Menzel,et al.  Chemical codes for the control of behaviour in arthropods , 1989, Nature.

[35]  R. Menzel,et al.  The use of electromyogram recordings to quantify odourant discrimination in the honey bee, Apis mellifera , 1989 .

[36]  Daniel Flanagan,et al.  An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L. (Hymenoptera: Apidae) , 1989 .

[37]  R. Menzel,et al.  Do insects have cognitive maps? , 1990, Annual review of neuroscience.

[38]  E. Borrelli,et al.  Cloning and characterization of a Drosophila tyramine receptor. , 1990, The EMBO journal.

[39]  W. Quinn,et al.  cAMP-dependent protein kinase and the disruption of learning in transgenic flies , 1991, Neuron.

[40]  U. Müller,et al.  Cyclic nucleotide-dependent protein kinases in the neural tissue of the honeybee Apis mellifera , 1991 .

[41]  T. R. Tobin,et al.  Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment. , 1991 .

[42]  M. Bitterman,et al.  Learning by honeybees (Apis mellifera) on arrival at and departure from a feeding place. , 1991, Journal of comparative psychology.

[43]  R. Menzel,et al.  Ca2+/calmodulin and Ca2+/phospholipid-dependent protein kinases in the neural tissue of the honeybee Apis mellifera , 1991 .

[44]  G. Bicker,et al.  Habituation of an appetitive reflex in the honeybee. , 1992, Journal of neurophysiology.

[45]  S. Kreissl,et al.  Dissociated neurons of the pupal honeybee brain in cell culture , 1992, Journal of neurocytology.

[46]  M. Elphick,et al.  Nitric oxide synthesis and action in an invertebrate brain , 1993, Brain Research.

[47]  R. Menzel,et al.  Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe , 1993, The Journal of comparative neurology.

[48]  Gordon M. Shepherd,et al.  Implications of the NO/cGMP system for olfaction , 1993, Trends in Neurosciences.

[49]  M. Hammer,et al.  Functional Organization of Appetitive Learning and Memory in a Generalist Pollinator, the Honey Bee , 1993 .

[50]  Reinhard Wolf,et al.  Visual pattern recognition in Drosophila involves retinotopic matching , 1993, Nature.

[51]  J. Mauelshagen,et al.  Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. , 1993, Journal of neurophysiology.

[52]  T. Dawson,et al.  Gases as biological messengers: nitric oxide and carbon monoxide in the brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  Randolf Menzel,et al.  Color learning and memory in honey bees are not affected by protein synthesis inhibition. , 1994, Behavioral and neural biology.

[54]  W. Getz,et al.  NONPHEROMONAL OLFACTORY PROCESSING IN INSECTS , 1994 .

[55]  G. Bicker,et al.  Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. , 1994, Journal of neurophysiology.

[56]  C. Craig,et al.  Limits to learning: effects of predator pattern and colour on perception and avoidance-learning by prey , 1994, Animal Behaviour.

[57]  M Heisenberg,et al.  Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. , 1994, Science.

[58]  M. Hammer,et al.  Food-induced arousal and nonassociative learning in honeybees: dependence of sensitization on the application site and duration of food stimulation. , 1994, Behavioral and neural biology.

[59]  U. Muller,et al.  Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  B. Smith,et al.  Effect of genotype but not of age or caste on olfactory learning performance in the honey bee, Apis mellifera , 1994, Animal Behaviour.

[61]  R Menzel,et al.  Ionic currents of Kenyon cells from the mushroom body of the honeybee , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  G. Laurent,et al.  Encoding of Olfactory Information with Oscillating Neural Assemblies , 1994, Science.

[63]  T. Laverty Costs to foraging bumble bees of switching plant species , 1994 .

[64]  Miriam Lehrer,et al.  Spatial vision in the honeybee: the use of different cues in different tasks , 1994, Vision Research.

[65]  T. Préat,et al.  Genetic dissection of consolidated memory in Drosophila , 1994, Cell.

[66]  Alan Gelperin,et al.  Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc , 1994, Nature.

[67]  P. Evans,et al.  Agonist‐specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. , 1994, The EMBO journal.

[68]  G. Laurent,et al.  Odorant-induced oscillations in the mushroom bodies of the locust , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  M. Hammer,et al.  Learning and memory in the honeybee , 1995 .

[70]  U. Müller,et al.  Octopamine mediates rapid stimulation of protein kinase A in the antennal lobe of honeybees. , 1995, Journal of neurobiology.

[71]  U. Müller,et al.  The Nitric Oxide/cGMP System in the Antennal Lobe of Apis mellifera is Implicated in Integrative Processing of Chemosensory Stimuli , 1995, The European journal of neuroscience.

[72]  Kunze,et al.  The knowledge base of bee navigation , 1996, The Journal of experimental biology.