Visual field asymmetries in visual evoked responses.

Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP.

[1]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[2]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[3]  D. Lehmann,et al.  Multichannel evoked potential fields show different properties of human upper and lower hemiretina systems , 1979, Experimental Brain Research.

[4]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[5]  Justin M. Ales,et al.  Methods for quantifying intra- and inter-subject variability of evoked potential data applied to the multifocal visual evoked potential , 2007, Journal of Neuroscience Methods.

[6]  E. Halgren,et al.  Cancellation of EEG and MEG signals generated by extended and distributed sources , 2009, Human brain mapping.

[7]  J. Kaas,et al.  Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys , 2002, Neuron.

[8]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[9]  Martial Mermillod,et al.  Effect of temporal constraints on hemispheric asymmetries during spatial frequency processing , 2006, Brain and Cognition.

[10]  Carole Peyrin,et al.  Hemispheric specialization for spatial frequency processing in the analysis of natural scenes , 2003, Brain and Cognition.

[11]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[12]  D. Cohen,et al.  Comparison of the magnetoencephalogram and electroencephalogram. , 1979, Electroencephalography and clinical neurophysiology.

[13]  Christoph M. Michel,et al.  Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes , 2005, NeuroImage.

[14]  P. Boulinguez,et al.  Hemispheric asymmetry for trajectory perception. , 2003, Brain research. Cognitive brain research.

[15]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[16]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[17]  Steven A. Hillyard,et al.  Identification of the neural sources of the pattern-reversal VEP , 2005, NeuroImage.

[18]  R. Hari,et al.  Stronger occipital cortical activation to lower than upper visual field stimuli Neuromagnetic recordings , 1999, Experimental Brain Research.

[19]  M. Nicholls,et al.  Hemispheric asymmetries for temporal information processing: Transient detection versus sustained monitoring , 2008, Brain and Cognition.

[20]  R. Bowtell,et al.  Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method , 2004, Journal of magnetic resonance imaging : JMRI.

[21]  Y. Ejima,et al.  Wiener Filter-Magnetoencephalography of Visual Cortical Activity , 2004, Brain Topography.

[22]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[23]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[24]  John D. Van Horn,et al.  Source cancellation profiles of electroencephalography and magnetoencephalography , 2012, NeuroImage.

[25]  D. Barth,et al.  Laminar excitability cycles in neocortex. , 1991, Journal of neurophysiology.

[26]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[27]  W G Sannita,et al.  Automatic perimetry and visual P300: differences between upper and lower visual fields stimulation in healthy subjects. , 1995, Journal of medical engineering & technology.

[28]  M. Kinsbourne The cerebral basis of lateral asymmetries in attention. , 1970, Acta psychologica.

[29]  Michael S Gazzaniga,et al.  Hemispheric asymmetries for simple visual judgments in the split brain , 2002, Neuropsychologia.

[30]  E. Cameron Perceptual inhomogeneities in the upper visual field , 2010 .

[31]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[32]  Chantal Delon-Martin,et al.  Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis , 2004, NeuroImage.

[33]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[34]  Anders M Dale,et al.  Improved method for retinotopy constrained source estimation of visual‐evoked responses , 2011, Human brain mapping.

[35]  P. Cavanagh,et al.  Attentional resolution and the locus of visual awareness , 1996, Nature.

[36]  Monica Baciu,et al.  Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study , 2004, NeuroImage.

[37]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[38]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[39]  Masa-aki Sato,et al.  Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals , 2008, NeuroImage.

[40]  Stephen Christman,et al.  Visual hemispheric asymmetries depend on which spatial frequencies are task relevant , 1992, Brain and Cognition.

[41]  H. Kennedy,et al.  Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey , 2004, Experimental Brain Research.

[42]  Ione Fine,et al.  The Relationship between Task Performance and Functional Magnetic Resonance Imaging Response , 2005, The Journal of Neuroscience.

[43]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[44]  Michael W. Levine,et al.  The relative capabilities of the upper and lower visual hemifields , 2005, Vision Research.

[45]  Charles E. Schroeder,et al.  What does polarity inversion of extrastriate activity tell us about striate contributions to the early VEP? A comment on Ales et al. (2010) , 2013, NeuroImage.

[46]  A. van Oosterom,et al.  Source parameter estimation in inhomogeneous volume conductors of arbitrary shape , 1989, IEEE Transactions on Biomedical Engineering.

[47]  Kevan A. C. Martin,et al.  Parallel pathways converge , 1992, Current Biology.

[48]  Klaus Willmes,et al.  Is there a generalized right hemisphere dominance for mediating cerebral activation? Evidence from a choice reaction experiment with lateralized simple warning stimuli , 1989, Neuropsychologia.

[49]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[51]  Martin I Sereno,et al.  Brain mapping in animals and humans , 1998, Current Opinion in Neurobiology.

[52]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[53]  K. Heilman,et al.  Right hemispheric dominance for mediating cerebral activation , 1979, Neuropsychologia.

[54]  M. Kuba,et al.  Effect of stimulus localisation on motion-onset VEP , 2004, Vision Research.

[55]  J. Kaas,et al.  Connectional Evidence for Dorsal and Ventral V3, and Other Extrastriate Areas in the Prosimian Primate, Galago garnetti , 2002, Brain, Behavior and Evolution.

[56]  Michael W. Levine,et al.  Magnocellular and parvocellular visual pathway contributions to visual field anisotropies , 2007, Vision Research.

[57]  S. McKee,et al.  Disparity-Specific Spatial Interactions: Evidence from EEG Source Imaging , 2012, The Journal of Neuroscience.

[58]  Bruce Fischl,et al.  Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops , 2007, IEEE Transactions on Medical Imaging.

[59]  Lars Riecke,et al.  Parietal and superior frontal visuospatial maps activated by pointing and saccades , 2007, NeuroImage.

[60]  Justin M. Ales,et al.  V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli , 2010, NeuroImage.

[61]  Klas H. Pettersen,et al.  Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. , 2007, Journal of neurophysiology.

[62]  F. Kitterle,et al.  Visual field effects in the discrimination of sine-wave gratings , 1991, Perception & psychophysics.

[63]  M. R. Harter,et al.  Evoked cortical responses to checkerboard patterns: effect of check-size as a function of retinal eccentricity. , 1970, Vision research.

[64]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[66]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[68]  H. Kojima,et al.  The what and why of perceptual asymmetries in the visual domain , 2010, Advances in cognitive psychology.

[69]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[70]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[71]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[72]  J. Kaas,et al.  Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of new world monkeys , 2002, The Journal of comparative neurology.

[73]  Anders M. Dale,et al.  Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging , 2010, NeuroImage.

[74]  J. Atkinson,et al.  Reorganization of Global Form and Motion Processing during Human Visual Development , 2010, Current Biology.

[75]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[76]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[77]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[78]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[79]  E. Sutter,et al.  M and P Components of the VEP and their Visual Field Distribution , 1997, Vision Research.

[80]  D. Hagler Optimization of retinotopy constrained source estimation constrained by prior , 2014, Human brain mapping.

[81]  P. Cavanagh,et al.  The Spatial Resolution of Visual Attention , 2001, Cognitive Psychology.

[82]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[83]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[84]  P. Corballis Visuospatial processing and the right-hemisphere interpreter , 2003, Brain and Cognition.

[85]  B. Skottun,et al.  A few remarks on attention and magnocellular deficits in schizophrenia , 2008, Neuroscience & Biobehavioral Reviews.

[86]  K. Yoshida,et al.  The afferent and efferent organization of the lateral geniculo‐prestriate pathways in the macaque monkey , 1981, The Journal of comparative neurology.

[87]  J. Kaas,et al.  Connectional and Architectonic Evidence for Dorsal and Ventral V3, and Dorsomedial Area in Marmoset Monkeys , 2001, The Journal of Neuroscience.

[88]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[89]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[90]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[91]  Anders M. Dale,et al.  Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data , 2006, NeuroImage.

[92]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[93]  Benjamin Letham,et al.  Statistically robust measurement of evoked response onset latencies , 2011, Journal of Neuroscience Methods.

[94]  J. Malpeli,et al.  Laminar and retinotopic organization of the macaque lateral geniculate nucleus: Magnocellular and parvocellular magnification functions , 1996, The Journal of comparative neurology.

[95]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[96]  A. M. Dale,et al.  Spatiotemporal Brain Imaging of Visual-Evoked Activity Using Interleaved EEG and fMRI Recordings , 2001, NeuroImage.

[97]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[98]  K. Yoshida,et al.  The projection from the dorsal lateral geniculate nucleus of the thalamus to extrastriate visual association cortex in the macaque monkey , 1981, Neuroscience Letters.

[99]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[100]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[101]  Jouko Lampinen,et al.  Automatic fMRI‐guided MEG multidipole localization for visual responses , 2009, Human brain mapping.

[102]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  B. Wandell,et al.  Compressive spatial summation in human visual cortex. , 2013, Journal of neurophysiology.

[104]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  E. Halgren,et al.  Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopically‐mapped stimulus locations , 2009, Human brain mapping.

[106]  T. Yeh,et al.  Optimal Check Size and Reversal Rate to Elicit Pattern-reversal MEG Responses , 2005, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[107]  Michael A. Silver,et al.  Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex , 2010, NeuroImage.

[108]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[109]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Andreas A. Ioannides,et al.  Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI , 2003, NeuroImage.

[111]  A. Dale,et al.  Structural MRI biomarkers for preclinical and mild Alzheimer's disease , 2009, Human brain mapping.

[112]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[113]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[114]  A. Hurlbert,et al.  Neuromagnetic correlates of visual motion coherence , 2005, The European journal of neuroscience.

[115]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[116]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[117]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[118]  Stanley A. Klein,et al.  The folding fingerprint of visual cortex reveals the timing of human V1 and V2 , 2010, NeuroImage.

[119]  M. Ptito,et al.  Activation of Human Extrageniculostriate Pathways after Damage to Area V1 , 1999, NeuroImage.

[120]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[121]  Jeff Miller,et al.  Jackknife-based method for measuring LRP onset latency differences. , 1998, Psychophysiology.

[122]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[123]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[124]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[125]  H. P. Meles,et al.  Average multichannel EEG potential fields evoked from upper and lower hemi-retina: latency differences. , 1977, Electroencephalography and clinical neurophysiology.

[126]  F. Kitterle,et al.  Hemispheric asymmetry in the processing of absolute versus relative spatial frequency , 1991, Brain and Cognition.

[127]  Thom Carney,et al.  Using multi-stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex , 1999, Clinical Neurophysiology.

[128]  J. Hsieh,et al.  An MEG study into the visual perception of apparent motion in depth , 2006, Neuroscience Letters.

[129]  Nikos K. Logothetis,et al.  Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex , 2009, PloS one.

[130]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[131]  W T Newsome,et al.  Ventral posterior visual area of the macaque: Visual topography and areal boundaries , 1986, The Journal of comparative neurology.

[132]  W. Skrandies The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences , 1987 .