Nonparametric Kernel Estimation Based on Fuzzy Random Variables

This paper extends the classical nonparametric curve-fitting methods for fuzzy random variables. The study was conducted in two parts: 1) fuzzy density estimation and 2) nonparametric regression. The classical nonparametric density estimation was first developed based on the kernel method for a given fuzzy random sample at crisp and/or fuzzy point based on crisp or fuzzy bandwidth. The classical bandwidth selection was also extended when the underlying population was normal with known or unknown fuzzy variance. Moreover, the classical nonparametric kernel-based regression model with crisp and/or input or output is extended whenever a given bandwidth is a crisp or fuzzy number. The cross-validation procedure for selecting the optimal value of the (crisp) smoothing parameter is also extended to fit the proposed nonparametric regression model. The large sample properties of the proposed fuzzy estimators were also investigated by some theorems. Several numerical examples including that of real-life data are used to illustrate the proposed methods in curve-fitting estimation with crisp and/or fuzzy information. Moreover, the proposed methods were examined in comparison with some other existing methods, and their effectiveness were clarified via some numerical examples and simulation studies. Both theatrical and numerical results indicated that the nonparametric curve-fitting methods significantly reduced the sum of square errors as well as the spreads of the fuzzy curve-fitting estimation.

[1]  Hung T. Nguyen,et al.  Fundamentals of Statistics with Fuzzy Data , 2006, Studies in Fuzziness and Soft Computing.

[2]  R. Coppi,et al.  A determination coefficient for a linear regression model with imprecise response , 2011 .

[3]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[4]  S. Mahmoud Taheri,et al.  An interval-based approach to fuzzy regression for fuzzy input-output data , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[5]  W. Härdle Applied Nonparametric Regression: Introduction , 1990 .

[6]  Witold Pedrycz,et al.  A Tabu–Harmony Search-Based Approach to Fuzzy Linear Regression , 2011, IEEE Transactions on Fuzzy Systems.

[7]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[8]  Lucien Duckstein,et al.  Comparison of fuzzy numbers using a fuzzy distance measure , 2002, Fuzzy Sets Syst..

[9]  Alireza Arabpour,et al.  ESTIMATING THE PARAMETERS OF A FUZZY LINEAR REGRESSION MODEL , 2008 .

[10]  Craig K. Enders,et al.  Applied Missing Data Analysis , 2010 .

[11]  James J. Buckley Fuzzy Probability and Statistics (Studies in Fuzziness and Soft Computing) , 2006 .

[12]  Bülent Tütmez Spatial dependence-based fuzzy regression clustering , 2012, Appl. Soft Comput..

[13]  Fernando A. Quintana,et al.  Bayesian Nonparametric Data Analysis , 2015 .

[14]  L. Wasserman All of Nonparametric Statistics , 2005 .

[15]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[16]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[17]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[18]  Ning Wang,et al.  Fuzzy nonparametric regression based on local linear smoothing technique , 2007, Inf. Sci..

[19]  Renkuan Guo,et al.  Uncertainty linear regression models. , 2011 .

[20]  S. Mahmoud Taheri,et al.  Fuzzy density estimation , 2012 .

[21]  Sebastian Calonico,et al.  Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs , 2014 .

[22]  Pierpaolo D'Urso,et al.  Robust fuzzy regression analysis , 2011, Inf. Sci..

[23]  Hsien-Chung Wu,et al.  The construction of fuzzy least squares estimators in fuzzy linear regression models , 2011, Expert Syst. Appl..

[24]  Hassan Hassanpour,et al.  A goal programming approach to fuzzy linear regression with fuzzy input–output data , 2011, Soft Comput..

[25]  Chiang Kao,et al.  Least-squares estimates in fuzzy regression analysis , 2003, Eur. J. Oper. Res..

[26]  William Ocampo-Duque,et al.  Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: application to the Cauca River, Colombia. , 2013, Environment international.

[27]  Jing-Rung Yu,et al.  Piecewise regression for fuzzy input-output data with automatic change-point detection by quadratic programming , 2010, Appl. Soft Comput..

[28]  Thierry Denoeux,et al.  Nonparametric rank-based statistics and significance tests for fuzzy data , 2005, Fuzzy Sets Syst..

[29]  Mohammad Ghasem Akbari,et al.  Statistical nonparametric test based on the intuitionistic fuzzy data , 2013, J. Intell. Fuzzy Syst..

[30]  Masatoshi Sakawa,et al.  Multiobjective fuzzy linear regression analysis for fuzzy input-output data , 1992 .

[31]  Przemysław Grzegorzewski Statistical inference about the median from vague data , 1998 .

[32]  S. M. Taheri,et al.  FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS , 2012 .

[33]  Kevin Loquin,et al.  Fuzzy Histograms and Density Estimation , 2006, SMPS.

[34]  Saeedeh Pourahmad,et al.  FUZZY LOGISTIC REGRESSION: A NEW POSSIBILISTIC MODEL AN:Q ITS APPLICATION IN CLINICAL VAGUE STATUS , 2011 .

[35]  S. M. Taheri,et al.  Fuzzy least-absolutes regression using shape preserving operations , 2012, Inf. Sci..

[36]  Ayman A. Mostafa,et al.  Bayesian Non-Parametric Estimation in Proportional Hazard Models: Survival Data Analysis with WinBUGS , 2012 .

[37]  Dan A. Ralescu,et al.  Tools for fuzzy random variables: Embeddings and measurabilities , 2006, Comput. Stat. Data Anal..

[38]  Saeid Abbasbandy,et al.  A Fuzzy Distance between Two Fuzzy Numbers , 2010, IPMU.

[39]  Wang Xiao On Fuzzy Statistics , 2001 .

[40]  Hamid Reza Maleki,et al.  FUZZY LINEAR REGRESSION MODEL WITH CRISP COEFFICIENTS: A GOAL PROGRAMMING APPROACH , 2010 .

[41]  Reinhard Viertl,et al.  Statistical Methods for Fuzzy Data: Viertl/Statistical Methods for Fuzzy Data , 2011 .

[42]  Sylvie Galichet,et al.  Linear Fuzzy Regression Using Trapezoidal Fuzzy Intervals , 2008, IPMU 2008.

[43]  Dabuxilatu Wang,et al.  A fuzzy nonparametric Shewhart chart based on the bootstrap approach , 2015, Int. J. Appl. Math. Comput. Sci..

[44]  Gholamreza Hesamian,et al.  Parametric testing statistical hypotheses for fuzzy random variables , 2016, Soft Comput..

[45]  R. Viertl Statistical Methods for Fuzzy Data , 2011 .

[46]  E. Lee,et al.  Nonparametric fuzzy regression—k-NN and kernel smoothing techniques , 1999 .