暂无分享,去创建一个
[1] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[2] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[3] Ivan V. Oseledets,et al. DMRG Approach to Fast Linear Algebra in the TT-Format , 2011, Comput. Methods Appl. Math..
[4] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[5] Esteban G. Tabak,et al. Data‐Driven Optimal Transport , 2016 .
[6] Youssef M. Marzouk,et al. Inference via Low-Dimensional Couplings , 2017, J. Mach. Learn. Res..
[7] Marcus A. Brubaker,et al. Normalizing Flows: Introduction and Ideas , 2019, ArXiv.
[8] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[9] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[10] C. Farhat. International Journal for Numerical Methods in Engineering , 2019 .
[11] Radford M. Neal. Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..
[12] Youssef M. Marzouk,et al. Spectral Tensor-Train Decomposition , 2014, SIAM J. Sci. Comput..
[13] K. Hukushima,et al. Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.
[14] Michael Griebel,et al. Analysis of Tensor Approximation Schemes for Continuous Functions , 2019, Foundations of Computational Mathematics.
[15] Tiangang Cui,et al. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction , 2015, J. Comput. Phys..
[16] S. Goreinov,et al. How to find a good submatrix , 2010 .
[17] White,et al. Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.
[18] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[19] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[20] Colin Fox,et al. Approximation and sampling of multivariate probability distributions in the tensor train decomposition , 2018, Statistics and Computing.
[21] Tiangang Cui,et al. A unified performance analysis of likelihood-informed subspace methods , 2021, Bernoulli.
[22] A. M. Stuart,et al. Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems , 2016, SIAM/ASA J. Uncertain. Quantification.
[23] Tiangang Cui,et al. Certified dimension reduction in nonlinear Bayesian inverse problems , 2018, Math. Comput..
[24] Y. Marzouk,et al. An introduction to sampling via measure transport , 2016, 1602.05023.
[25] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[26] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[27] Benjamin Peherstorfer,et al. A transport-based multifidelity preconditioner for Markov chain Monte Carlo , 2018, Advances in Computational Mathematics.
[28] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[29] Richard J. Boys,et al. Discussion to "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead , 2011 .
[30] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[31] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[32] Lloyd N. Trefethen,et al. Approximation Theory and Approximation Practice, Extended Edition , 2019 .
[33] Y. Marzouk,et al. Greedy inference with structure-exploiting lazy maps , 2019, NeurIPS.
[34] Ivan Kobyzev,et al. Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[35] D. Higdon. Space and Space-Time Modeling using Process Convolutions , 2002 .
[36] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[37] Anthony L. Caterini,et al. Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows , 2019, ICML.
[38] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[39] Youssef Marzouk,et al. Transport Map Accelerated Markov Chain Monte Carlo , 2014, SIAM/ASA J. Uncertain. Quantification.
[40] Arnaud Doucet,et al. Variational Inference with Continuously-Indexed Normalizing Flows , 2021, UAI.
[41] David Duvenaud,et al. Residual Flows for Invertible Generative Modeling , 2019, NeurIPS.
[42] Xiao-Li Meng,et al. SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .
[43] W. Förstner,et al. A Metric for Covariance Matrices , 2003 .
[44] C. Villani. Optimal Transport: Old and New , 2008 .
[45] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[46] Wang,et al. Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.
[47] Alexandros Beskos,et al. Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A Case Study for the Navier-Stokes Equations , 2013, SIAM/ASA J. Uncertain. Quantification.
[48] H. Knothe. Contributions to the theory of convex bodies. , 1957 .
[49] Tiangang Cui,et al. Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.
[50] Erik W. Grafarend,et al. Geodesy-The Challenge of the 3rd Millennium , 2003 .
[51] Sertac Karaman,et al. A continuous analogue of the tensor-train decomposition , 2015, Computer Methods in Applied Mechanics and Engineering.
[52] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[53] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[54] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[55] E. Tabak,et al. A Family of Nonparametric Density Estimation Algorithms , 2013 .
[56] Ivan V. Oseledets,et al. Rectangular maximum-volume submatrices and their applications , 2015, ArXiv.
[57] Severnyi Kavkaz. Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .
[58] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[59] S. Goreinov,et al. Pseudo-skeleton approximations by matrices of maximal volume , 1997 .
[60] Eric Nalisnick,et al. Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..
[61] Ullrich Köthe,et al. HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference , 2019, AAAI.
[62] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[63] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[64] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[65] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[66] Y. Marzouk,et al. Greedy inference with layers of lazy maps , 2019, 1906.00031.
[67] Xiao-Li Meng,et al. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .
[68] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[69] Guillaume Carlier,et al. From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..
[70] Dilin Wang,et al. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.
[71] Tiangang Cui,et al. A Stein variational Newton method , 2018, NeurIPS.
[72] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[73] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .