Deep Composition of Tensor-Trains Using Squared Inverse Rosenblatt Transports

Characterising intractable high-dimensional random variables is one of the fundamental challenges in stochastic computation. The recent surge of transport maps offers a mathematical foundation and new insights for tackling this challenge by coupling intractable random variables with tractable reference random variables. This paper generalises the functional tensor-train approximation of the inverse Rosenblatt transport recently developed by Dolgov et al. (Stat Comput 30:603–625, 2020) to a wide class of high-dimensional non-negative functions, such as unnormalised probability density functions. First, we extend the inverse Rosenblatt transform to enable the transport to general reference measures other than the uniform measure. We develop an efficient procedure to compute this transport from a squared tensor-train decomposition which preserves the monotonicity. More crucially, we integrate the proposed order-preserving functional tensor-train transport into a nested variable transformation framework inspired by the layered structure of deep neural networks. The resulting deep inverse Rosenblatt transport significantly expands the capability of tensor approximations and transport maps to random variables with complicated nonlinear interactions and concentrated density functions. We demonstrate the efficiency of the proposed approach on a range of applications in statistical learning and uncertainty quantification, including parameter estimation for dynamical systems and inverse problems constrained by partial differential equations.

[1]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[2]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[3]  Ivan V. Oseledets,et al.  DMRG Approach to Fast Linear Algebra in the TT-Format , 2011, Comput. Methods Appl. Math..

[4]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[5]  Esteban G. Tabak,et al.  Data‐Driven Optimal Transport , 2016 .

[6]  Youssef M. Marzouk,et al.  Inference via Low-Dimensional Couplings , 2017, J. Mach. Learn. Res..

[7]  Marcus A. Brubaker,et al.  Normalizing Flows: Introduction and Ideas , 2019, ArXiv.

[8]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[9]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[10]  C. Farhat International Journal for Numerical Methods in Engineering , 2019 .

[11]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..

[12]  Youssef M. Marzouk,et al.  Spectral Tensor-Train Decomposition , 2014, SIAM J. Sci. Comput..

[13]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[14]  Michael Griebel,et al.  Analysis of Tensor Approximation Schemes for Continuous Functions , 2019, Foundations of Computational Mathematics.

[15]  Tiangang Cui,et al.  Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction , 2015, J. Comput. Phys..

[16]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[17]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[18]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[19]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[20]  Colin Fox,et al.  Approximation and sampling of multivariate probability distributions in the tensor train decomposition , 2018, Statistics and Computing.

[21]  Tiangang Cui,et al.  A unified performance analysis of likelihood-informed subspace methods , 2021, Bernoulli.

[22]  A. M. Stuart,et al.  Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems , 2016, SIAM/ASA J. Uncertain. Quantification.

[23]  Tiangang Cui,et al.  Certified dimension reduction in nonlinear Bayesian inverse problems , 2018, Math. Comput..

[24]  Y. Marzouk,et al.  An introduction to sampling via measure transport , 2016, 1602.05023.

[25]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[26]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[27]  Benjamin Peherstorfer,et al.  A transport-based multifidelity preconditioner for Markov chain Monte Carlo , 2018, Advances in Computational Mathematics.

[28]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[29]  Richard J. Boys,et al.  Discussion to "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead , 2011 .

[30]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[31]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[32]  Lloyd N. Trefethen,et al.  Approximation Theory and Approximation Practice, Extended Edition , 2019 .

[33]  Y. Marzouk,et al.  Greedy inference with structure-exploiting lazy maps , 2019, NeurIPS.

[34]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[36]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[37]  Anthony L. Caterini,et al.  Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows , 2019, ICML.

[38]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[39]  Youssef Marzouk,et al.  Transport Map Accelerated Markov Chain Monte Carlo , 2014, SIAM/ASA J. Uncertain. Quantification.

[40]  Arnaud Doucet,et al.  Variational Inference with Continuously-Indexed Normalizing Flows , 2021, UAI.

[41]  David Duvenaud,et al.  Residual Flows for Invertible Generative Modeling , 2019, NeurIPS.

[42]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[43]  W. Förstner,et al.  A Metric for Covariance Matrices , 2003 .

[44]  C. Villani Optimal Transport: Old and New , 2008 .

[45]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[46]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[47]  Alexandros Beskos,et al.  Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A Case Study for the Navier-Stokes Equations , 2013, SIAM/ASA J. Uncertain. Quantification.

[48]  H. Knothe Contributions to the theory of convex bodies. , 1957 .

[49]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[50]  Erik W. Grafarend,et al.  Geodesy-The Challenge of the 3rd Millennium , 2003 .

[51]  Sertac Karaman,et al.  A continuous analogue of the tensor-train decomposition , 2015, Computer Methods in Applied Mechanics and Engineering.

[52]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[53]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[54]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[55]  E. Tabak,et al.  A Family of Nonparametric Density Estimation Algorithms , 2013 .

[56]  Ivan V. Oseledets,et al.  Rectangular maximum-volume submatrices and their applications , 2015, ArXiv.

[57]  Severnyi Kavkaz Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .

[58]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[59]  S. Goreinov,et al.  Pseudo-skeleton approximations by matrices of maximal volume , 1997 .

[60]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[61]  Ullrich Köthe,et al.  HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference , 2019, AAAI.

[62]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[63]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[64]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[65]  Tiangang Cui,et al.  Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..

[66]  Y. Marzouk,et al.  Greedy inference with layers of lazy maps , 2019, 1906.00031.

[67]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[68]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[69]  Guillaume Carlier,et al.  From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..

[70]  Dilin Wang,et al.  Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.

[71]  Tiangang Cui,et al.  A Stein variational Newton method , 2018, NeurIPS.

[72]  Tiangang Cui,et al.  Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.

[73]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .