An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems

We address the problem of estimating the unknown parameters of a primary chaotic system that produces an observed time series. These observations are used to drive a secondary system in a way that ensures synchronization when the two systems have identical parameters. We propose a new method to adaptively adjust the parameters in the secondary system until synchronization is achieved. It is based on the gradient-descent optimization of a suitably defined cost function and can be systematically applied to arbitrary systems. We illustrate its application by estimating the complete parameter vector of a Lorenz system.

[1]  J. Timmer,et al.  Parameter estimation in nonlinear stochastic differential equations , 2000 .

[2]  A d'Anjou,et al.  Parameter-adaptive identical synchronization disclosing Lorenz chaotic masking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  H. Sakaguchi Parameter evaluation from time sequences using chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Baake,et al.  Fitting ordinary differential equations to chaotic data. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[6]  Jack J Jiang,et al.  Estimating model parameters by chaos synchronization. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  D Sornette,et al.  Statistical methods of parameter estimation for deterministically chaotic time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  R. Konnur Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J Kurths,et al.  Estimation of parameters and unobserved components for nonlinear systems from noisy time series. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Debin Huang Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  C. Grebogi,et al.  Using geometric control and chaotic synchronization to estimate an unknown model parameter. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Hermann Singer Parameter Estimation of Nonlinear Stochastic Differential Equations: Simulated Maximum Likelihood versus Extended Kalman Filter and Itô-Taylor Expansion , 2002 .

[13]  India,et al.  Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.

[14]  Nikolai F. Rulkov,et al.  Designing a Coupling That Guarantees Synchronization between Identical Chaotic Systems , 1997 .

[15]  B D Kulkarni,et al.  Parameter estimation in spatially extended systems: the Karhunen-Lóeve and Galerkin multiple shooting approach. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.