An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems
暂无分享,去创建一个
[1] J. Timmer,et al. Parameter estimation in nonlinear stochastic differential equations , 2000 .
[2] A d'Anjou,et al. Parameter-adaptive identical synchronization disclosing Lorenz chaotic masking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] H. Sakaguchi. Parameter evaluation from time sequences using chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Baake,et al. Fitting ordinary differential equations to chaotic data. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[5] Parlitz,et al. Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.
[6] Jack J Jiang,et al. Estimating model parameters by chaos synchronization. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] D Sornette,et al. Statistical methods of parameter estimation for deterministically chaotic time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] R. Konnur. Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[9] J Kurths,et al. Estimation of parameters and unobserved components for nonlinear systems from noisy time series. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] Debin Huang. Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] C. Grebogi,et al. Using geometric control and chaotic synchronization to estimate an unknown model parameter. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] Hermann Singer. Parameter Estimation of Nonlinear Stochastic Differential Equations: Simulated Maximum Likelihood versus Extended Kalman Filter and Itô-Taylor Expansion , 2002 .
[13] India,et al. Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.
[14] Nikolai F. Rulkov,et al. Designing a Coupling That Guarantees Synchronization between Identical Chaotic Systems , 1997 .
[15] B D Kulkarni,et al. Parameter estimation in spatially extended systems: the Karhunen-Lóeve and Galerkin multiple shooting approach. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Parlitz,et al. Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.