Minimax flow tree problems

We examine a class of problems which seeks to find tree-structured networks which minimize the maximum cost among a subset of nodes in a graph. The cost metric is characterized by a series of parameters which can represent distance, flow volume, and delivery deadlines. Derived through variations in problem parameters, we present 17 different problems and discuss their worst-case complexity. Fourteen of the problems are new to the literature. We show that some of the problems are NP-complete and others are polynomially solvable.

[1]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[2]  Luís Gouveia,et al.  Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints , 1995, Comput. Oper. Res..

[3]  Refael Hassin,et al.  On the Minimum Diameter Spanning Tree Problem , 1995, Inf. Process. Lett..

[4]  Chuan Yi Tang,et al.  A polynomial time approximation scheme for minimum routing cost spanning trees , 1998, SODA '98.

[5]  D. Peleg,et al.  Polylogarithmic Approximation for Minimum Communication Spanning Trees , 1997 .

[6]  H. Brendan McMahan,et al.  Multi-source spanning trees: algorithms for minimizing source eccentricities , 2004, Discret. Appl. Math..

[7]  Luís Gouveia,et al.  Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and Steiner Trees with Hop Constraints , 1998, INFORMS J. Comput..

[8]  S. Voß,et al.  The Steiner tree problem with hop constraints , 1999, Ann. Oper. Res..

[9]  Chuan Yi Tang,et al.  Approximation algorithms for some optimum communication spanning tree problems , 2000, Discret. Appl. Math..

[10]  Pitu B. Mirchandani,et al.  Location on networks : theory and algorithms , 1979 .

[11]  Warren B. Powell,et al.  Shipment Routing Algorithms with Tree Constraints , 1992, Transp. Sci..

[12]  Hui-Huang Chen Minimum Distance Violation Tree Problems , 2007 .

[13]  L. Gouveia Multicommodity flow models for spanning trees with hop constraints , 1996 .

[14]  T. C. Hu Optimum Communication Spanning Trees , 1974, SIAM J. Comput..

[15]  Bang Ye Wu,et al.  A polynomial time approximation scheme for the two-source minimum routing cost spanning trees , 2002, J. Algorithms.

[16]  Ernst Althaus,et al.  Approximating k-hop minimum-spanning trees , 2005, Oper. Res. Lett..

[17]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[18]  Subhash Suri,et al.  Offline maintenance of planar configurations , 1991, SODA '91.

[19]  R. L. Francis,et al.  A Minimax Location Problem on a Network , 1974 .

[20]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .

[21]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[22]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[23]  Geir Dahl,et al.  The 2-hop spanning tree problem , 1998, Oper. Res. Lett..

[24]  Bang Ye Wu,et al.  An improved algorithm for the k-source maximum eccentricity spanning trees , 2004, Discret. Appl. Math..

[25]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[26]  Chak-Kuen Wong,et al.  Minimum Diameter Spanning Trees and Related Problems , 1991, SIAM J. Comput..

[27]  David W. Krumme,et al.  Minimum Eccentricity Multicast Trees , 2001, Discret. Math. Theor. Comput. Sci..

[28]  R. K. Ahuja,et al.  Exact and Heuristic Algorithms for the Optimum Communication Spanning Tree Problem , 1987, Transp. Sci..

[29]  Matthias F. Stallmann,et al.  Some Approximation Results in Multicasting , 1996 .

[30]  G. Handler Minimax Location of a Facility in an Undirected Tree Graph , 1973 .

[31]  Andrzej Proskurowski,et al.  The complexity of minimizing certain cost metrics for k-source spanning trees , 2003, Discret. Appl. Math..

[32]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[33]  David Peleg,et al.  Deterministic Polylog Approximation for Minimum Communication Spanning Trees , 1998, ICALP.

[34]  Chuan Yi Tang,et al.  Approximation algorithms for the shortest total path length spanning tree problem , 2000, Discret. Appl. Math..

[35]  Leonidas Palios,et al.  Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics , 2005, ISAAC.

[36]  Luís Gouveia,et al.  A new Lagrangean relaxation approach for the hop-constrained minimum spanning tree problem , 2001, Eur. J. Oper. Res..

[37]  Jan Karel Lenstra,et al.  The complexity of the network design problem : (preprint) , 1977 .

[38]  Arthur M. Farley,et al.  Multi-Source Spanning Tree Problems , 2000, J. Interconnect. Networks.