Duality invariant cosmology to all orders in α′

While the classification of $\alpha'$ corrections of string inspired effective theories remains an unsolved problem, we show how to classify duality invariant $\alpha'$ corrections for purely time-dependent (cosmological) backgrounds. We determine the most general duality invariant theory to all orders in $\alpha'$ for the metric, $b$-field, and dilaton. The resulting Friedmann equations are studied when the spatial metric is a time-dependent scale factor times the Euclidean metric and the $b$-field vanishes. These equations can be integrated perturbatively to any order in $\alpha'$. We construct non-perturbative solutions and display duality invariant theories featuring string-frame de Sitter vacua.

[1]  Robie A. Hennigar,et al.  Geometric inflation , 2018, Physics Letters B.

[2]  R. Brandenberger Beyond Standard Inflationary Cosmology , 2018, Beyond Spacetime.

[3]  Eric Lescano,et al.  The generalized Bergshoeff-de Roo identification , 2018, Journal of High Energy Physics.

[4]  R. Brandenberger,et al.  Stringy black-hole gas in α′ -corrected dilaton gravity , 2018, Physical Review D.

[5]  A. Weltman,et al.  Dual spacetime and nonsingular string cosmology , 2018, Physical Review D.

[6]  D. Marqués,et al.  The Odd story of α′-corrections , 2017, 1702.05489.

[7]  O. Hohm Background Independence and Duality Invariance in String Theory. , 2016, Physical review letters.

[8]  O. Hohm Background independent double field theory at order .ALPHA.': Metric versus framelike geometry , 2016, 1612.06453.

[9]  Eric Lescano,et al.  Second order higher-derivative corrections in Double Field Theory , 2016, 1611.05031.

[10]  P. Vecchia,et al.  Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton , 2016, 1610.03481.

[11]  B. Zwiebach,et al.  On the curious spectrum of duality invariant higher-derivative gravity , 2016, 1607.01784.

[12]  B. Zwiebach,et al.  T-duality constraints on higher derivatives revisited , 2015, 1510.00005.

[13]  C. Nuñez,et al.  T-duality and α′-corrections , 2015, 1507.00652.

[14]  R. Blumenhagen,et al.  Generalized metric formulation of double field theory on group manifolds , 2015, 1502.02428.

[15]  B. Zwiebach,et al.  Green-Schwarz mechanism and α′-deformed Courant brackets , 2014, 1407.0708.

[16]  A. Sen,et al.  Heterotic effective action and duality symmetries revisited , 2014, 1411.5696.

[17]  B. Zwiebach,et al.  Double field theory at order α′ , 2014, 1407.3803.

[18]  Houwen Wu,et al.  Double field theory inspired cosmology , 2013, 1307.0159.

[19]  C. Hull,et al.  Generalized metric formulation of double field theory , 2010, 1006.4823.

[20]  A. Mazumdar,et al.  Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity , 2010, 1005.0590.

[21]  C. Hull,et al.  Background independent action for double field theory , 2010, 1003.5027.

[22]  C. Hull,et al.  Double Field Theory , 2009, 0904.4664.

[23]  Herbert S. Wilf,et al.  Lectures on Integer Partitions , 2009 .

[24]  Anupam Mazumdar,et al.  Bouncing universes in string-inspired gravity , 2005, hep-th/0508194.

[25]  Haitang Yang,et al.  Rolling closed string tachyons and the big crunch , 2005, hep-th/0506076.

[26]  K. Meissner Symmetries of higher order string gravity actions , 1996, hep-th/9610131.

[27]  B. Zwiebach,et al.  The dilaton theorem and closed string backgrounds , 1994, hep-th/9411047.

[28]  G. Veneziano,et al.  Phenomenological aspects of the pre-big-bang scenario in string cosmology , 1994, hep-th/0207130.

[29]  Siegel Superspace duality in low-energy superstrings. , 1993, Physical review. D, Particles and fields.

[30]  H. Hata Soft Dilaton Theorem in String Field Theory , 1992 .

[31]  J. Schwarz,et al.  Noncompact Symmetries in String Theory , 1992, hep-th/9207016.

[32]  T. Kugo,et al.  Target Space Duality as a Symmetry of String Field Theory , 1992, hep-th/9201040.

[33]  C. Vafa,et al.  Elements of string cosmology , 1991, hep-th/9109048.

[34]  A. Sen O (d)⊗O (d) Symmetry of the space of cosmological solutions in string theory, scale factor duality, and two-dimensional black holes , 1991 .

[35]  G. Veneziano,et al.  Symmetries of cosmological superstring vacua , 1991 .

[36]  G. Veneziano SCALE FACTOR DUALITY FOR CLASSICAL AND QUANTUM STRINGS , 1991 .

[37]  Mark Mueller Rolling radii and a time-dependent dilation , 1990 .

[38]  C. Vafa,et al.  Superstrings in the Early Universe , 1989 .

[39]  A. Tseytlin,et al.  Order α′ (two-loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions: Dependence on the dilaton and the antisymmetric tensor , 1987 .

[40]  D. Gross,et al.  The Quartic Effective Action for the Heterotic String , 1987 .

[41]  D. Gross,et al.  Superstring Modifications of Einstein's Equations , 1986 .

[42]  B. Zwiebach Curvature Squared Terms and String Theories , 1985 .