Total colorings-a survey

[1]  T. Suksumran,et al.  Total Coloring of Some Classes of Cayley Graphs on Non-Abelian Groups , 2022, Symmetry.

[2]  Jin Xu,et al.  Total coloring of recursive maximal planar graphs , 2022, Theor. Comput. Sci..

[3]  K. Somasundaram,et al.  Total colorings of some classes of four regular circulant graphs , 2021, AKCE International Journal of Graphs and Combinatorics.

[4]  Guangming Jing,et al.  A note on Goldberg's conjecture on total chromatic numbers , 2021, J. Graph Theory.

[5]  A. Zorzi,et al.  Compositions, decompositions, and conformability for total coloring on power of cycle graphs , 2021, Discret. Appl. Math..

[6]  L. Ferrarini,et al.  Total Coloring and Total Matching: Polyhedra and Facets , 2021, Eur. J. Oper. Res..

[7]  Zuosong Liang Total Coloring of Claw-Free Planar Graphs , 2020, Discuss. Math. Graph Theory.

[8]  D. Sasaki,et al.  On total and edge coloring some Kneser graphs , 2021, Journal of Combinatorial Optimization.

[9]  Guanghui Wang,et al.  Total-coloring of Sparse Graphs with Maximum Degree 6 , 2021, Acta Mathematicae Applicatae Sinica, English Series.

[10]  Simone Dantas,et al.  Determining equitable total chromatic number for infinite classes of complete r-partite graphs , 2020, Discret. Appl. Math..

[11]  Hanna Furmanczyk,et al.  Equitable Total Coloring of Corona of Cubic Graphs , 2015, Discuss. Math. Graph Theory.

[12]  D. Sasaki,et al.  On total coloring of 4-regular circulant graphs , 2021, Procedia Computer Science.

[13]  L. Kowada,et al.  On total coloring the direct product of complete graphs , 2021, Latin-American Algorithms, Graphs and Optimization Symposium.

[14]  Lin Sun,et al.  The List Edge Coloring and List Total Coloring of Planar Graphs with Maximum Degree at Least 7 , 2020, Discuss. Math. Graph Theory.

[15]  B. S. Panda,et al.  On the total and AVD-total coloring of graphs , 2020, AKCE Int. J. Graphs Comb..

[16]  Celina M. H. de Figueiredo,et al.  Even-power of Cycles With Many Vertices are Type 1 Total Colorable , 2019, LAGOS.

[17]  Simone Dantas,et al.  Equitable total coloring of complete r-partite p-balanced graphs , 2019, Discret. Appl. Math..

[18]  K. Somasundaram,et al.  Total Coloring Conjecture for Certain Classes of Graphs , 2018, Algorithms.

[19]  Martin Charles Golumbic,et al.  Total coloring of rooted path graphs , 2018, Inf. Process. Lett..

[20]  K. Somasundaram,et al.  Total Colorings of Product Graphs , 2018, Graphs Comb..

[21]  Bin Wang,et al.  The Largest Component in Critical Random Intersection Graphs , 2018, Discuss. Math. Graph Theory.

[22]  Xin Zhang,et al.  Total coloring of outer-1-planar graphs with near-independent crossings , 2017, J. Comb. Optim..

[23]  Jian-Liang Wu,et al.  On total colorings of some special 1-planar graphs , 2017 .

[24]  Jin Xu,et al.  A sufficient condition for planar graphs with maximum degree 6 to be totally 8-colorable , 2017, Discret. Appl. Math..

[25]  Bin Liu,et al.  Total coloring of planar graphs without adjacent chordal 6-cycles , 2016, J. Comb. Optim..

[26]  Daniel W. Cranston,et al.  An introduction to the discharging method via graph coloring , 2013, Discret. Math..

[27]  Tao Wang,et al.  Total coloring of 1-toroidal graphs with maximum degree at least 11 and no adjacent triangles , 2012, J. Comb. Optim..

[28]  Weili Wu,et al.  Total coloring of planar graphs without adjacent short cycles , 2017, J. Comb. Optim..

[29]  Celina M. H. de Figueiredo,et al.  On the equitable total chromatic number of cubic graphs , 2016, Discret. Appl. Math..

[30]  Bin Liu,et al.  A note on the minimum total coloring of planar graphs , 2016 .

[31]  Celina M. H. de Figueiredo,et al.  On the total coloring of generalized Petersen graphs , 2016, Discret. Math..

[32]  Bhawani Sankar Panda,et al.  Total-colorings of complete multipartite graphs using amalgamations , 2016, Discret. Math..

[33]  Lin Sun,et al.  Total coloring of planar graphs without short cycles , 2016, J. Comb. Optim..

[34]  Maya Jakobine Stein,et al.  List Edge‐Coloring and Total Coloring in Graphs of Low Treewidth , 2013, J. Graph Theory.

[35]  Hua Cai Total coloring of planar graphs without chordal 7-cycles , 2015 .

[36]  Christopher A. Rodger,et al.  The Total Chromatic Number of Complete Multipartite Graphs with Low Deficiency , 2015, Graphs Comb..

[37]  Bin Liu,et al.  Total Coloring of Planar Graphs Without Chordal Short Cycles , 2015, Graphs Comb..

[38]  Jian-Liang Wu,et al.  Total Coloring of Planar Graphs Without Some Chordal 6-cycles , 2015 .

[39]  Lidong Wu,et al.  List edge and list total coloring of planar graphs with maximum degree 8 , 2014, Journal of Combinatorial Optimization.

[40]  Jianfeng Hou,et al.  On total colorings of 1-planar graphs , 2013, J. Comb. Optim..

[41]  Panos M. Pardalos,et al.  Minimum total coloring of planar graph , 2014, J. Glob. Optim..

[42]  Hao Li,et al.  Total chromatic number of generalized Mycielski graphs , 2014, Discret. Math..

[43]  Bing Wang,et al.  Total colorings of planar graphs without chordal 6-cycles , 2014, Discret. Appl. Math..

[44]  Jian Chang,et al.  Total Colorings of $F_5$-free Planar Graphs with Maximum Degree 8 , 2014, Electron. J. Comb..

[45]  Jian-Liang Wu,et al.  Total colorings of planar graphs with sparse triangles , 2014, Theor. Comput. Sci..

[46]  Maxfield Leidner,et al.  A Larger Family of Planar Graphs that Satisfy the Total Coloring Conjecture , 2014, Graphs Comb..

[47]  Jian-Liang Wu,et al.  Total coloring of planar graphs with 7-cycles containing at most two chords , 2014, Theor. Comput. Sci..

[48]  Celina M. H. de Figueiredo,et al.  The hunting of a snark with total chromatic number 5 , 2014, Discret. Appl. Math..

[49]  Celina M. H. de Figueiredo,et al.  Complexity of colouring problems restricted to unichord-free and { square, unichord }-free graphs , 2013, Discret. Appl. Math..

[50]  Jian Wu,et al.  A note on list edge and list total coloring of planar graphs without adjacent short cycles , 2014 .

[51]  Bin Liu,et al.  Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic , 2014 .

[52]  Bin Liu,et al.  Total coloring of embedded graphs with maximum degree at least seven , 2014, Theor. Comput. Sci..

[53]  Wensong Lin,et al.  A concise proof for total coloring subcubic graphs , 2013, Inf. Process. Lett..

[54]  Celina M. H. de Figueiredo,et al.  Edge-colouring and total-colouring chordless graphs , 2013, Discret. Math..

[55]  Július Czap,et al.  A note on total colorings of 1-planar graphs , 2013, Inf. Process. Lett..

[56]  Xin Zhang,et al.  List total coloring of pseudo-outerplanar graphs , 2013, Discret. Math..

[57]  Yingqian Wang,et al.  Sufficient conditions for a planar graph to be list edge Δ-colorable and list totally (Δ+1)-colorable , 2013, Discret. Math..

[58]  Jian Chang,et al.  Total colorings of planar graphs with maximum degree 8 and without 5-cycles with two chords , 2013, Theor. Comput. Sci..

[59]  Oleg V. Borodin,et al.  Colorings of plane graphs: A survey , 2013, Discret. Math..

[60]  Guiying Yan,et al.  Planar graphs with maximum degree 8 and without intersecting chordal 4-cycles are 9-totally colorable , 2012 .

[61]  Celina M. H. de Figueiredo,et al.  The total chromatic number of split-indifference graphs , 2012, Discret. Math..

[62]  Bing Wang,et al.  Total colorings of planar graphs without intersecting 5-cycles , 2012, Discret. Appl. Math..

[63]  Jian-Liang Wu,et al.  A note on the total coloring of planar graphs without adjacent 4-cycles , 2012, Discret. Math..

[64]  Andreas M. Hinz,et al.  Coloring Hanoi and Sierpiński graphs , 2012, Discret. Math..

[65]  Xin Zhang,et al.  List edge and list total coloring of 1-planar graphs , 2012 .

[66]  B. Liu,et al.  List total colorings of planar graphs without triangles at small distance , 2011 .

[67]  Bing Wang,et al.  Total colorings of planar graphs with maximum degree seven and without intersecting 3-cycles , 2011, Discret. Math..

[68]  Bing Wang,et al.  Total coloring of planar graphs with maximum degree 7 , 2011, Inf. Process. Lett..

[69]  Celina M. H. de Figueiredo,et al.  Total chromatic number of unichord-free graphs , 2011, Discret. Appl. Math..

[70]  Celina M. H. de Figueiredo,et al.  Complexity separating classes for edge-colouring and total-colouring , 2011, Journal of the Brazilian Computer Society.

[71]  Yingqian Wang,et al.  (Δ+1)-total-colorability of plane graphs of maximum degree Δ≥6 with neither chordal 5-cycle nor chordal 6-cycle , 2011, Inf. Process. Lett..

[72]  C. N. Campos,et al.  The total-chromatic number of some families of snarks , 2011, Discret. Math..

[73]  Gerard J. Chang,et al.  Local condition for planar graphs of maximum degree 7 to be 8-totally colorable , 2011, Discret. Appl. Math..

[74]  Nicolas Rousse Local Condition for Planar Graphs of Maximum Degree 6 to be Total 8-Colorable , 2011 .

[75]  Bin Liu,et al.  Total coloring of planar graphs without 6-cycles , 2011, Discret. Appl. Math..

[76]  Yingqian Wang,et al.  Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable , 2010, Discret. Math..

[77]  Yingqian Wang,et al.  (Delta+1)-total-colorability of plane graphs with maximum degree Delta at least 6 and without adjacent short cycles , 2010, Inf. Process. Lett..

[78]  Celina M. H. de Figueiredo,et al.  Total chromatic number of {square, unichord}-free graphs , 2010, Electron. Notes Discret. Math..

[79]  Bin Liu,et al.  Total coloring of embedded graphs of maximum degree at least ten , 2010 .

[80]  Xuding Zhu,et al.  Total coloring of planar graphs of maximum degree eight , 2010, Inf. Process. Lett..

[81]  Wei-Fan Wang,et al.  Adjacent vertex distinguishing total colorings of outerplanar graphs , 2010, J. Comb. Optim..

[82]  Celina M. H. de Figueiredo,et al.  Author's Personal Copy Theoretical Computer Science Chromatic Index of Graphs with No Cycle with a Unique Chord , 2022 .

[83]  Yingqian Wang,et al.  On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles , 2009, Graphs Comb..

[84]  Dezheng Xie,et al.  The total chromatic number of regular graphs of high degree , 2009 .

[85]  Sandi Klavzar,et al.  Vertex-, edge-, and total-colorings of Sierpinski-like graphs , 2009, Discret. Math..

[86]  Yuansheng Yang,et al.  Equitable total coloring of CmCn , 2009, Discret. Appl. Math..

[87]  Jianfeng Hou,et al.  Total colorings of planar graphs without adjacent triangles , 2009, Discret. Math..

[88]  Olivier Togni,et al.  Total and fractional total colourings of circulant graphs , 2008, Discret. Math..

[89]  Jean-Sébastien Sereni,et al.  Total colouring of plane graphs with maximum degree nine , 2007 .

[90]  Jianfeng Hou,et al.  Total Colorings of Planar Graphs without Small Cycles , 2008, Graphs Comb..

[91]  C. N. Campos,et al.  The total chromatic number of some bipartite graphs , 2005, Ars Comb..

[92]  Zhiwen Wang,et al.  Vertex Distinguishing Equitable Total Chromatic Number of Join Graph , 2007 .

[93]  Shuji Isobe,et al.  Total Colorings Of Degenerate Graphs , 2007, Comb..

[94]  Yingqian Wang,et al.  On total chromatic number of planar graphs without 4-cycles , 2007 .

[95]  Limin Zhang,et al.  Total chromatic number of one kind of join graphs , 2006, Discret. Math..

[96]  Zhongshi He,et al.  The total chromatic number of regular graphs of even order and high degree , 2005, Discret. Math..

[97]  C. N. Campos,et al.  A result on the total colouring of powers of cycles , 2004, Discret. Appl. Math..

[98]  Janez Zerovnik,et al.  Behzad-Vizing conjecture and Cartesian product graphs , 2002, Electron. Notes Discret. Math..

[99]  A. E. I. Abd el Maqsoud,et al.  Total colourings of Cartesian products , 1997 .

[100]  M. Seoud,et al.  Total chromatic numbers , 1992 .

[101]  Amanda G. Chetwynd,et al.  The Total Chromatic Number of Graphs of High Minimum Degree , 1991 .

[102]  J. Hattingh THE EDGE-CHROHATIC NUMBER OF A CIRCULANT , 1988 .

[103]  Mark K. Goldberg,et al.  Edge-coloring of multigraphs: Recoloring technique , 1984, J. Graph Theory.

[104]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[105]  C. Smith,et al.  Some Binary Games , 1944, The Mathematical Gazette.