The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.

[1]  W. C. Lai,et al.  Protein-induced bonding perturbation of the rhodopsin chromophore detected by double-quantum solid-state NMR. , 2004, Journal of the American Chemical Society.

[2]  Jürgen Hafner,et al.  The Nature of the Complex Counterion of the Chromophore in Rhodopsin , 2004 .

[3]  R. Birge,et al.  Vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base and a counterion switch during photoactivation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Marko Schreiber,et al.  Exploring the Opsin shift with ab initio methods: Geometry and counterion effects on the electronic spectrum of retinal. , 2003 .

[5]  Thomas B Woolf,et al.  Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: coupling between local retinal and larger scale conformational change. , 2003, Journal of molecular biology.

[6]  R. Birge,et al.  Perspectives on the counterion switch-induced photoactivation of the G protein-coupled receptor rhodopsin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Hafner,et al.  Thr94 and Wat2b effect protonation of the retinal chromophore in rhodopsin. , 2003, Angewandte Chemie.

[8]  R. Mathies,et al.  Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Krzysztof Palczewski,et al.  Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. , 2003, Biochemistry.

[10]  M. Elstner,et al.  11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore. , 2002, Biochemistry.

[11]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[12]  K. Nakanishi,et al.  Solution and biologically relevant conformations of enantiomeric 11-cis-locked cyclopropyl retinals. , 2002, Journal of the American Chemical Society.

[13]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Mathies,et al.  Function of extracellular loop 2 in rhodopsin: glutamic acid 181 modulates stability and absorption wavelength of metarhodopsin II. , 2002, Biochemistry.

[15]  Tao Wang,et al.  On the bioactive conformation of the rhodopsin chromophore: absolute sense of twist around the 6-s-cis bond. , 2001, Chemistry.

[16]  Arieh Warshel,et al.  Nature of the Surface Crossing Process in Bacteriorhodopsin: Computer Simulations of the Quantum Dynamics of the Primary Photochemical Event , 2001 .

[17]  M. Fülscher,et al.  Nonempirical Calculation of Polymethine Excited States. , 2001, Angewandte Chemie.

[18]  D C Teller,et al.  Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). , 2001, Biochemistry.

[19]  K. Palczewski,et al.  Activation of rhodopsin: new insights from structural and biochemical studies. , 2001, Trends in biochemical sciences.

[20]  Iwao Ohmine,et al.  Proton Transfer in Bacteriorhodopsin: Structure, Excitation, IR Spectra, and Potential Energy Surface Analyses by an ab Initio QM/MM Method , 2000 .

[21]  Weingart,et al.  Fast Photoisomerization of a Rhodopsin Model-An Ab Initio Molecular Dynamics Study This work was supported by the Deutsche Forschungsgemeinschaft (Graduate College "Struktur und Dynamikheterogener Systeme"). , 2000, Angewandte Chemie.

[22]  Kenneth M. Merz,et al.  Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems , 1999 .

[23]  H. D. de Groot,et al.  Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. , 1999, Biochemistry.

[24]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[25]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[26]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[27]  Frank Terstegen,et al.  ABSOLUTE SENSE OF TWIST OF THE C12-C13 BOND OF THE RETINAL CHROMOPHORE IN RHODOPSIN : SEMIEMPIRICAL AND NONEMPIRICAL CALCULATIONS OF CHIROPTICAL DATA , 1998 .

[28]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[29]  Frank Terstegen,et al.  Influence of DFT-calculated electron correlation on energies and geometries of retinals and of retinal derivatives related to the bacteriorhodopsin and rhodopsin chromophores , 1998 .

[30]  J. Baldwin,et al.  An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. , 1997, Journal of molecular biology.

[31]  B. Santarsiero,et al.  Structure and wavelength modification in retinylidene iminium salts , 1996 .

[32]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[33]  R G Griffin,et al.  Synergy in the spectral tuning of retinal pigments: complete accounting of the opsin shift in bacteriorhodopsin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Fahmy,et al.  Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[35]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[36]  M. James,et al.  Crystal structure of N-Methyl-N-phenylretinal iminium perchlorate: A structural model for the bacteriorhodopsin chromophore , 1990 .

[37]  D. Baylor,et al.  How photoreceptor cells respond to light. , 1987, Scientific American.

[38]  L. P. Murray,et al.  Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Y. Fukada,et al.  A NOVEL RHODOPSIN ANALOGUE POSSESSING THE CYCLOPENTATRIENYLIDENE STRUCTURE AS THE LL-CIS-LOCKED AND THE FULL PLANAR CHROMOPHORE , 1982 .

[40]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[41]  F. Crescitelli,et al.  CIRCULAR DICHROISM OF VISUAL PIGMENTS IN THE VISIBLE AND ULTRAVIOLET SPECTRAL REGIONS* , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H Gobind Khorana,et al.  Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. , 2003, Advances in protein chemistry.

[43]  J. Bockaert,et al.  G protein-coupled receptors: dominant players in cell-cell communication. , 2002, International review of cytology.

[44]  Efthimios Kaxiras,et al.  A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method , 2001 .

[45]  V. Buss,et al.  Inherent chirality of the retinal chromophore in rhodopsin-A nonempirical theoretical analysis of chiroptical data. , 2001, Chirality.

[46]  P. Hargrave,et al.  Preparation and analysis of two-dimensional crystals of rhodopsin. , 2000, Methods in enzymology.

[47]  Y. Shichida,et al.  Retinoids and related compounds. Part 20.1 Synthesis of(11Z)-8,18-ethanoretinal and a conformational study of therhodopsin chromophore , 1997 .

[48]  L. Dähne,et al.  The tube' structure of 1,7-bis(dimethylamino)-heptamethinium tetrafluoroborate, a streptocyanine dye , 1994 .

[49]  S. Dähne,et al.  Experimental evidence of Bond‐angle and Hybridisation Alteration caused by π‐electron density alternation , 1973 .