Spin-selective contact type and strong Fermi level pinning at CrI3/metal interface

[1]  Wanlin Guo,et al.  Nonlinear elasticity and strain-tunable magnetocalorics of antiferromagnetic monolayer MnPS3 , 2022, Extreme Mechanics Letters.

[2]  Z. Lee,et al.  Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length , 2022, Nature Communications.

[3]  Zhong Lin Wang,et al.  Piezo-Phototronic Effect Boosted Catalysis in Plasmonic Bimetallic ZnO Heterostructure with Guided Fermi Level Alignment , 2022, Materials Today Nano.

[4]  M. Yi,et al.  High and Anomalous Thermal Conductivity in Monolayer MSi2Z4 Semiconductors. , 2021, ACS applied materials & interfaces.

[5]  U. Schwingenschlögl,et al.  Dipole-induced Ohmic contacts between monolayer Janus MoSSe and bulk metals , 2021, npj 2D Materials and Applications.

[6]  Z. Fan,et al.  Exploring Magnetic Stability and Valley Splitting on CrI3/SiC van der Waals Heterostructure , 2021 .

[7]  B. Yakobson,et al.  Dimensionality-Reduced Fermi Level Pinning in Coplanar 2D Heterojunctions. , 2021, The journal of physical chemistry letters.

[8]  Wenjing Qin,et al.  CrI3/Y2CH2 Heterointerface-Induced Stable Half-Metallicity of Two-Dimensional CrI3 Monolayer Ferromagnets. , 2021, ACS applied materials & interfaces.

[9]  L. Ding,et al.  Spin caloritronics in two-dimensional CrI3/NiCl2 van der Waals heterostructures , 2021 .

[10]  J. Zhong,et al.  Robust transport of charge carriers in in-plane 1T′-2H MoTe2 homojunctions with ohmic contact , 2021, Nano Research.

[11]  W. Jie,et al.  Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap materials , 2020 .

[12]  B. Xu,et al.  Electric field induced magnetization reversal in magnet/insulator nanoheterostructure , 2020, International Journal of Smart and Nano Materials.

[13]  L. Deng,et al.  Ferromagnetic and ferroelectric two-dimensional materials for memory application , 2020, Nano Research.

[14]  F. Subhan,et al.  Large Valley Splitting and Enhancement of Curie Temperature in a Two-Dimensional VI3/CrI3 Heterostructure , 2020 .

[15]  Binguang He,et al.  Spin-dependent Schottky barriers and vacancy-induced spin-selective ohmic contacts in magnetic vdW heterostructures. , 2020, Physical chemistry chemical physics : PCCP.

[16]  C. Cárdenas,et al.  Magnon valley Hall effect in CrI3 -based van der Waals heterostructures , 2020, 2001.11934.

[17]  Young Hee Lee,et al.  Edge Contact for Carrier Injection and Transport in MoS2 Field-Effect Transistors. , 2019, ACS nano.

[18]  P. Jena,et al.  Boosting the Curie Temperature of Two-Dimensional Semiconducting CrI3 Monolayer through van der Waals Heterostructures , 2019, The Journal of Physical Chemistry C.

[19]  D. Jana,et al.  Strain induced electronic and magnetic properties of 2D magnet CrI3: a DFT approach , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Dong Choon Hyun,et al.  Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications , 2019, Nano Research.

[21]  Yan Su,et al.  Interface depended electronic and magnetic properties of vertical CrI3/WSe2 heterostructures , 2019, RSC advances.

[22]  Yuhong Huang,et al.  Junction-configuration-dependent interfacial electronic states of a monolayer MoS2/metal contact , 2019, Journal of Materials Chemistry C.

[23]  Wei-Bing Zhang,et al.  The enhanced ferromagnetism of single-layer CrX3 (X = Br and I) via van der Waals engineering. , 2019, Physical chemistry chemical physics : PCCP.

[24]  Zhiming M. Wang,et al.  Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials , 2019, Nano-micro letters.

[25]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[26]  G. Guo,et al.  Magnetism and magneto-optical effects in bulk and few-layer CrI3: a theoretical GGA + U study , 2019, New Journal of Physics.

[27]  Wei Liu,et al.  van der Waals Stacking Induced Transition from Schottky to Ohmic Contacts: 2D Metals on Multilayer InSe. , 2019, Journal of the American Chemical Society.

[28]  Saptarshi Das,et al.  Contact engineering for 2D materials and devices. , 2018, Chemical Society reviews.

[29]  X. Duan,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[30]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[31]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[32]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[33]  Yan Xin,et al.  One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy , 2018, Nature.

[34]  P. Yan,et al.  A study on the electronic and interfacial structures of monolayer ReS2-metal contacts. , 2017, Physical chemistry chemical physics : PCCP.

[35]  Jingbo Li,et al.  Tunable Schottky Barrier at MoSe2/Metal Interfaces with a Buffer Layer , 2017 .

[36]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[37]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[38]  B. Yakobson,et al.  Carrier Delocalization in Two-Dimensional Coplanar p-n Junctions of Graphene and Metal Dichalcogenides. , 2016, Nano letters.

[39]  Fengren Fan,et al.  Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer , 2016 .

[40]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[41]  Gang Zhang,et al.  Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures , 2015, 1505.07545.

[42]  G. Brocks,et al.  Controlling the Schottky barrier at MoS 2/metal contacts by inserting a BN monolayer , 2015, 1501.02130.

[43]  Hao Hu,et al.  Half metal in two-dimensional hexagonal organometallic framework , 2014, Nanoscale Research Letters.

[44]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[45]  M. Katsnelson,et al.  Schottky barriers at hexagonal boron nitride/metal interfaces: A first-principles study , 2014, 1401.6440.

[46]  E. Kaxiras,et al.  Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. , 2013, Nano letters.

[47]  E. Vogel,et al.  First-principles study of metal–graphene interfaces , 2010 .

[48]  Taisuke Ozaki,et al.  Efficient implementation of the nonequilibrium Green function method for electronic transport calculations , 2009, 0908.4142.

[49]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[50]  E. K. Evangelou,et al.  Fermi-level pinning and charge neutrality level in germanium , 2006 .

[51]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[52]  R. T. Tung,et al.  Chemical bonding and fermi level pinning at metal-semiconductor interfaces. , 2000, Physical review letters.

[53]  A. Shusterman,et al.  Teaching Chemistry with Electron Density Models , 1997 .

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[56]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[57]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[58]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[59]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[60]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[61]  H. Hasegawa,et al.  On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states , 1983 .