Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces

ABSTRACT We consider a transmission problem consisting of two semilinear parabolic equations involving fractional diffusion operators of different orders in a general non-smooth setting with emphasis on Lipschitz interfaces and transmission conditions along the interface. We give a unified framework for the existence and uniqueness of strong and mild solutions, and their global regularity properties.

[1]  Antoine Mellet,et al.  Fractional Diffusion Limit for Collisional Kinetic Equations , 2008, 0809.2455.

[2]  E. Sanchez-Palencia,et al.  Phénomènes de transmission à travers des couches minces de conductivitéélevée , 1974 .

[3]  Zhi-Ming Ma,et al.  Reflected Symmetric α-Stable Processes and Regional Fractional Laplacian , 2006 .

[4]  Ciprian G. Gal,et al.  Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions , 2016 .

[5]  F. Rothe Global Solutions of Reaction-Diffusion Systems , 1984 .

[6]  J. Zou,et al.  Some New A Priori Estimates for Second-Order Elliptic and Parabolic Interface Problems , 2002 .

[7]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[8]  M. Warma The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian , 2016, Nonlinear Differential Equations and Applications NoDEA.

[9]  M. Jara,et al.  Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps , 2007, 0707.4491.

[10]  Maria Rosaria Lancia,et al.  A Transmission Problem with a Fractal Interface , 2002 .

[11]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[12]  E. Ouhabaz Analysis of Heat Equations on Domains. (LMS-31) , 2009 .

[13]  E. Ouhabaz Analysis of Heat Equations on Domains , 2004 .

[14]  Bernardo Spagnolo,et al.  Lévy Flight Superdiffusion: an Introduction , 2008, Int. J. Bifurc. Chaos.

[15]  Generalized solvability and optimization of a parabolic system with a discontinuous solution , 2007 .

[16]  Francesco Mainardi,et al.  Continuous-time random walk and parametric subordination in fractional diffusion , 2007 .

[17]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[18]  Ciprian G. Gal,et al.  Transmission problems with nonlocal boundary conditions and rough dynamic interfaces , 2015, 1509.03133.

[19]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[20]  Dennis Kriventsov,et al.  Regularity for a Local–Nonlocal Transmission Problem , 2014, 1404.1363.

[21]  J. Rehberg,et al.  Parabolic equations with dynamical boundary conditions and source terms on interfaces , 2012, 1206.0600.

[22]  Guillaume Bal,et al.  Diffusion Approximation of Radiative Transfer Problems with Interfaces , 2000, SIAM J. Appl. Math..

[23]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[24]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[25]  Qing-Yang Guan,et al.  Integration by Parts Formula for Regional Fractional Laplacian , 2006 .

[26]  Serge Nicaise,et al.  Dynamical interface transition in ramified media with diffusion , 1996 .

[27]  J. Rehberg,et al.  A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces , 2013, 1312.5882.

[28]  Xavier Ros-Oton,et al.  Nonlocal problems with Neumann boundary conditions , 2014, 1407.3313.

[29]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[30]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[31]  Enrico Valdinoci,et al.  From the long jump random walk to the fractional Laplacian , 2009, 0901.3261.

[32]  D. Danielli,et al.  Non-doubling Ahlfors Measures, Perimeter Measures, And the Characterization of the Trace Spaces of Sobolev Functions in Carnot-caratheodory Spaces , 2006 .

[33]  Interior Regularity for Regional Fractional Laplacian , 2015 .

[34]  Transmission Phenomena Across Highly Conductive Interfaces , 2007 .

[35]  Ciprian G. Gal,et al.  Long-term behavior of reaction–diffusion equations with nonlocal boundary conditions on rough domains , 2015, 1503.05744.

[36]  Heat Content Asymptotics with Transmittal and Transmission Boundary Conditions , 2002, math-ph/0206022.

[37]  Zhen-Qing Chen,et al.  Heat kernel estimates for stable-like processes on d-sets , 2003 .

[38]  Jinqiao Duan,et al.  Fractional Fokker-Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises , 1999, math/0409486.

[39]  Zhi-Ming Ma,et al.  BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .

[40]  Ciprian G. Gal,et al.  Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions , 2015 .

[41]  Maria Rosaria Lancia,et al.  Irregular Heat Flow Problems , 2010, SIAM J. Math. Anal..

[42]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[43]  A M Reynolds,et al.  The Lévy flight paradigm: random search patterns and mechanisms. , 2009, Ecology.

[44]  M. R. Lancia,et al.  Semilinear evolution transmission problems across fractal layers , 2012 .

[45]  M. Borsuk Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains , 2010 .

[46]  Mahamadi Warma,et al.  The Fractional Relative Capacity and the Fractional Laplacian with Neumann and Robin Boundary Conditions on Open Sets , 2015 .

[47]  J. L. Zolesio,et al.  Multiplication dans les espaces de Besov , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.