Temporal self-organizing maps for telecommunications market segmentation

A method for clustering time-varying data by using neural networks, i.e. Kohonen self-organizing maps (SOMs), is suggested. Some dissimilarity measures for capturing the temporal structure of the data are introduced and used in Kohonen SOMs allowing clustering of temporal data. Another method for clustering time-varying data, called dynamic tandem analysis (DTA), based on the sequential utilization of dynamic factor analysis and cluster analysis, is also considered. The methods are applied to telecommunications market segmentation on real data. The obtained results are compared and discussed.

[1]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[2]  Pierpaolo D'Urso,et al.  The Geometric Approach to the Comparison of Multivariate Time Trajectories , 2001 .

[3]  Adi Raveh,et al.  A Graphic Display for Characterization of Seasonal Pattern Similarities of Time Series , 1981 .

[4]  Pierpaolo D'Urso,et al.  Fuzzy Clustering for Data Time Arrays With Inlier and Outlier Time Trajectories , 2005, IEEE Transactions on Fuzzy Systems.

[5]  Adi Raveh,et al.  Finding common seasonal patterns among time series: An MDS approach , 1980 .

[6]  Guang-Bin Huang,et al.  Ordering of Self-Organizing Maps in Multidimensional Cases , 1998, Neural Computation.

[7]  John G. Taylor,et al.  On the Ordering Conditions for Self-Organizing Maps , 1995, Neural Computation.

[8]  Elizabeth Ann Maharaj,et al.  A SIGNIFICANCE TEST FOR CLASSIFYING ARMA MODELS , 1996 .

[9]  K. Schulten,et al.  On the stationary state of Kohonen's self-organizing sensory mapping , 2004, Biological Cybernetics.

[10]  Jouko Lampinen,et al.  Temporal Kohonen Map and the Recurrent Self-Organizing Map: Analytical and Experimental Comparison , 2004, Neural Processing Letters.

[11]  Isabella Corazziari,et al.  Dynamic Factor Analysis , 1999 .

[12]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[13]  Axel Wismüller,et al.  Cluster Analysis of Biomedical Image Time-Series , 2002, International Journal of Computer Vision.

[14]  Robert H. Shumway,et al.  Discrimination and Clustering for Multivariate Time Series , 1998 .

[15]  Livia De Giovanni,et al.  ON THE MATHEMATICAL TREATMENT OF SELF-ORGANIZATION: EXTENSION OF SOME CLASSICAL RESULTS , 1991 .

[16]  Barbara Hammer,et al.  Unsupervised Recursive Sequence Processing , 2003, ESANN.

[17]  R. Coppi,et al.  The Dual Dynamic Factor Analysis Models , 2002 .

[18]  Hans-Hermann Bock,et al.  Advances in data science and classification , 1998 .

[19]  Erkki Oja,et al.  Kohonen Maps , 1999, Encyclopedia of Machine Learning.

[20]  Jan C. Wiemer,et al.  The Time-Organized Map Algorithm: Extending the Self-Organizing Map to Spatiotemporal Signals , 2003, Neural Computation.

[21]  Ah Chung Tsoi,et al.  A self-organizing map for adaptive processing of structured data , 2003, IEEE Trans. Neural Networks.

[22]  Alfred Ultsch,et al.  Data Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series , 1999 .

[23]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[24]  Thomas Villmann,et al.  Magnification Control in Self-Organizing Maps and Neural Gas , 2006, Neural Computation.

[25]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[26]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[27]  Maurizio Vichi,et al.  Classification and Data Analysis: Theory and application , 1999 .

[28]  Thomas Villmann,et al.  Neural maps and topographic vector quantization , 1999, Neural Networks.

[29]  Marc Strickert,et al.  Neural Gas for Sequences , 2003 .

[30]  Pierpaolo D'Urso,et al.  Dissimilarity measures for time trajectories , 2000 .

[31]  A. Carlier,et al.  Factor Analysis of Evolution and Cluster Methods on Trajectories , 1986 .

[32]  K. Kosmelj,et al.  Aspect temporel des relations entre les variables hydriques du Haut-Rhône français , 1983 .

[33]  Aluizio F. R. Araújo,et al.  A Taxonomy for Spatiotemporal Connectionist Networks Revisited: The Unsupervised Case , 2003, Neural Computation.

[34]  Wolfgang Gaul,et al.  "Classification, Automation, and New Media" , 2002 .

[35]  Jean-Claude Fort SOM's mathematics , 2006, Neural Networks.

[36]  D. Piccolo A DISTANCE MEASURE FOR CLASSIFYING ARIMA MODELS , 1990 .

[37]  Katarina Košmelj A two‐step procedure for clustering time varying data , 1986 .