Automatic Classification of Swedish Email Messages

[1]  Gosse Bouma,et al.  Accurate Stemming of Dutch for Text Classification , 2001, CLIN.

[2]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[3]  Jeffrey O. Kephart,et al.  MailCat: an intelligent assistant for organizing e-mail , 1999, AGENTS '99.

[4]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[5]  William W. Cohen Learning Rules that Classify E-Mail , 1996 .

[6]  Stan Matwin,et al.  Email classification with co-training , 2011, CASCON.

[7]  Georgios Paliouras,et al.  Filtron: A Learning-Based Anti-Spam Filter , 2004, CEAS.

[8]  Rafael A. Calvo,et al.  Intelligent document classification , 2000, Intell. Data Anal..

[9]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[10]  Thorsten Joachims,et al.  A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization , 1997, ICML.

[11]  Jefferson Provost,et al.  Na ive-Bayes vs. Rule-Learning in Classification of Email , 1999 .

[12]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[13]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[14]  Ran El-Yaniv,et al.  Distributional Word Clusters vs. Words for Text Categorization , 2003, J. Mach. Learn. Res..

[15]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[16]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[17]  David D. Lewis,et al.  A comparison of two learning algorithms for text categorization , 1994 .

[18]  Georgios Paliouras,et al.  Learning to Filter Unsolicited Commercial E-Mail , 2006 .

[19]  Jason D. M. Rennie ifile: An Application of Machine Learning to E-Mail Filtering , 2000 .

[20]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[21]  Yiming Yang,et al.  Expert network: effective and efficient learning from human decisions in text categorization and retrieval , 1994, SIGIR '94.

[22]  James P. Callan,et al.  Training algorithms for linear text classifiers , 1996, SIGIR '96.

[23]  Ellen Riloff,et al.  Little words can make a big difference for text classification , 1995, SIGIR '95.

[24]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[25]  Pedro M. Domingos,et al.  Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier , 1996, ICML.

[26]  Yaxin Bi,et al.  An kNN Model-Based Approach and Its Application in Text Categorization , 2004, CICLing.

[27]  Rafael A. Calvo,et al.  A framework for text categorization , 2002, ADCS.

[28]  Andrew McCallum,et al.  Distributional clustering of words for text classification , 1998, SIGIR '98.