Reconstruction of laser beam wavefronts based on mode analysis.

We present the reconstruction of a laser beam wavefront from its mode spectrum and investigate in detail the impact of distinct aberrations on the mode composition. The measurement principle is presented on a Gaussian beam that is intentionally distorted by displaying defined aberrations on a spatial light modulator. The comparison of reconstructed and programmed wavefront aberrations yields excellent agreement, proving the high measurement fidelity.

[1]  Daniel Flamm,et al.  Wavefront reconstruction by modal decomposition. , 2012, Optics express.

[2]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[3]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[4]  S. Kawata,et al.  Adaptive aberration correction in a two‐photon microscope , 2000, Journal of microscopy.

[5]  Thomas Kaiser,et al.  Complete modal decomposition for optical fibers using CGH-based correlation filters. , 2009, Optics express.

[6]  R. Lutomirski,et al.  Propagation of a finite optical beam in an inhomogeneous medium. , 1971, Applied optics.

[7]  Simone Esposito,et al.  Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. , 2006, Optics express.

[8]  Daniel Flamm,et al.  Mode analysis with a spatial light modulator as a correlation filter. , 2012, Optics letters.

[9]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[10]  L. A. González,et al.  Pixelated phase computer holograms for the accurate encoding of scalar complex fields. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Greg Gbur,et al.  Vortex beam propagation through atmospheric turbulence and topological charge conservation. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Francois Roddier,et al.  Adaptive Optics in Astronomy: Imaging through the atmosphere , 2004 .

[13]  N. Hodgson,et al.  Laser Resonators and Beam Propagation , 2005 .

[14]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[15]  W H Lee,et al.  Binary computer-generated holograms. , 1979, Applied optics.

[16]  Geoff Andersen,et al.  Holographic wavefront sensor , 2009 .

[17]  R G Lane,et al.  Wave-front reconstruction using a Shack-Hartmann sensor. , 1992, Applied Optics.

[18]  L W Casperson,et al.  Gaussian light beams in inhomogeneous media. , 1973, Applied optics.

[19]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[20]  J C Wyant,et al.  Evaluation of large aberrations using a lateral-shear interferometer having variable shear. , 1975, Applied optics.

[21]  J. Ricklin,et al.  Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  R Navarro,et al.  Laser ray-tracing method for optical testing. , 1999, Optics letters.

[23]  Mathieu Cohen,et al.  Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers. , 2005, Optics letters.

[24]  Luis Roso,et al.  Wavefront retrieval of amplified femtosecond beams by second-harmonic generation. , 2011, Optics express.

[25]  Michael Duparré,et al.  Modal decomposition without a priori scale information. , 2012, Optics express.