RANS closures for non-neutral microscale CFD simulations sustained with inflow conditions acquired from mesoscale simulations

Abstract This study focuses on bridging the gap between the turbulence modelling methodologies of meterological and engineering codes by proposing a novel methodology to define the closure coefficients of Reynolds-Averaged Navier-Stokes turbulence models consistently with the physics of the atmospheric boundary layer. In this framework, different turbulence closures have been developed and tested on different full-scale test cases corresponding to different atmospheric stability conditions by performing microscale simulations with the inflow conditions provided by a numerical weather prediction (NWP) code. Developed turbulence models have been implemented into the open source computational fluid dynamics (CFD) toolbox, OpenFOAM and the inflow conditions have been acquired with another open source code, the Weather Research and Forecasting (WRF) model.

[1]  P. Lacarrére,et al.  Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model , 1989 .

[2]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[3]  A. Holtslag,et al.  An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes , 2008 .

[4]  F. Porté-Agel,et al.  On Monin–Obukhov Similarity In The Stable Atmospheric Boundary Layer , 2001 .

[5]  B. Galperin,et al.  ‘Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice’ , 2005 .

[6]  N. Coudou,et al.  Experimental study on the wind-turbine wake meandering inside a scale model wind farm placed in an atmospheric-boundary-layer wind tunnel , 2017 .

[7]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[8]  C. Masson,et al.  k‐ϵ Model for the Atmospheric Boundary Layer Under Various Thermal Stratifications , 2005 .

[9]  Julie K. Lundquist,et al.  Interaction of Nocturnal Low-Level Jets with Urban Geometries as seen in Joint URBAN 2003 Data , 2006 .

[10]  Andrzej A. Wyszogrodzki,et al.  Evaluation of the coupling between mesoscale-WRF and LES‐EULAG models for simulating fine-scale urban dispersion , 2012 .

[11]  R. Stull Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory , 1993 .

[12]  O. Temel,et al.  Adaptation of mesoscale turbulence parameterisation schemes as RANS closures for ABL simulations , 2016 .

[13]  Song-You Hong,et al.  Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99 , 2011 .

[14]  Alessandro Parente,et al.  A Comprehensive Modelling Approach for the Neutral Atmospheric Boundary Layer: Consistent Inflow Conditions, Wall Function and Turbulence Model , 2011 .

[15]  Jimy Dudhia,et al.  Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations , 2007 .

[16]  Gergely Kristóf,et al.  Adaptation of Pressure Based CFD Solvers for Mesoscale Atmospheric Problems , 2009 .

[17]  D. Etling,et al.  Application of the E-ε turbulence model to the atmospheric boundary layer , 1985 .

[18]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[19]  N. C. Markatos,et al.  Recent advances on the numerical modelling of turbulent flows , 2015 .

[20]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .

[21]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[22]  A. Beljaars The parametrization of surface fluxes in large-scale models under free convection , 1995 .

[23]  M. Xue,et al.  High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments , 2006 .

[24]  W. Skamarock,et al.  The Impact of Positive-Definite Moisture Transport on NWP Precipitation Forecasts , 2009 .

[25]  Alessandro Parente,et al.  RANS simulation of ABL flow over complex terrains applying an enhanced k-ε model and wall function formulation , 2012 .

[26]  Extending the wind profile much higher than the surface layer , 2009 .

[27]  Shuhua Liu,et al.  Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model , 2013, Advances in Atmospheric Sciences.

[28]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[29]  J. Smith,et al.  Nested Mesoscale Large-Eddy Simulations with WRF: Performance in Real Test Cases , 2012 .

[30]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[31]  T. Stathopoulos,et al.  CFD simulation of the atmospheric boundary layer: wall function problems , 2007 .

[32]  C. Lacor,et al.  CFD modelling approaches against single wind turbine wake measurements using RANS , 2016 .

[33]  T. Foken 50 Years of the Monin–Obukhov Similarity Theory , 2006 .

[34]  D. Muñoz‐Esparza,et al.  Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models , 2014, Boundary-Layer Meteorology.

[35]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[36]  A. Clappier,et al.  An Urban Surface Exchange Parameterisation for Mesoscale Models , 2002 .

[37]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[38]  D. K. Walters,et al.  A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow , 2008 .

[39]  S. Larsen,et al.  On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer , 2007 .

[40]  D. Muñoz‐Esparza,et al.  Limitations of One-Dimensional Mesoscale PBL Parameterizations in Reproducing Mountain-Wave Flows , 2016 .

[41]  F. Lien,et al.  Assessment of turbulence-transport models including non-linear rng eddy-viscosity formulation and second-moment closure for flow over a backward-facing step , 1994 .

[42]  Xinyang Jin,et al.  New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering , 2009 .

[43]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[44]  K. Allwine,et al.  Joint Urban 2003: Study Overview And Instrument Locations , 2006 .

[45]  J. Wyngaard Toward Numerical Modeling in the “Terra Incognita” , 2004 .

[46]  M. Letzel,et al.  High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale , 2008 .

[47]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[48]  Wei Wang,et al.  Large-Eddy Simulation of an Idealized Tropical Cyclone , 2009 .

[49]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[50]  G. Thompson,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization , 2008 .

[51]  J. Palma,et al.  Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier–Stokes Equations (k∈ Turbulence Model) , 2003 .

[52]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[53]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[54]  J. Beeck,et al.  Two-equation eddy viscosity models based on the Monin–Obukhov similarity theory , 2017 .

[55]  Zhiyong Li,et al.  A data-driven adaptive Reynolds-averaged Navier-Stokes k-ω model for turbulent flow , 2017, J. Comput. Phys..

[56]  H. Niino,et al.  Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer , 2009 .

[57]  M Pontiggia,et al.  Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes. , 2009, Journal of hazardous materials.

[58]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[59]  Gianluca Iaccarino,et al.  Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows , 2015 .

[60]  A. Gastli,et al.  Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment , 2010 .