A 27-node hybrid brick and a 21-node hybrid wedge element for structural analysis
暂无分享,去创建一个
[1] K. Y. Sze,et al. An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .
[2] J. J. Rhiu,et al. A new efficient mixed formulation for thin shell finite element models , 1987 .
[3] Y. K. Cheung,et al. Three-dimensional 8-node and 20-node refined hybrid isoparametric elements , 1992 .
[4] F. Bussamra,et al. Three-dimensional hybrid-Trefftz stress elements , 2000 .
[5] K. Y. Sze,et al. A novel approach for devising higher‐order hybrid elements , 1993 .
[6] S. Atluri,et al. Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybrid-stress elements , 1984 .
[7] Robert L. Spilker,et al. Three‐dimensional hybrid‐stress isoparametric quadratic displacement elements , 1982 .
[8] R. L. Harder,et al. A proposed standard set of problems to test finite element accuracy , 1985 .
[9] W. Soedel. Vibrations of shells and plates , 1981 .
[10] C. Jog. Higher-order shell elements based on a Cosserat model, and their use in the topology design of structures , 2004 .
[11] S. W. Lee,et al. A new efficient approach to the formulation of mixed finite element models for structural analysis , 1986 .
[12] K. Y. Sze,et al. Stabilization schemes for 12-node to 21-node brick elements based on orthogonal and consistently assumed stress modes , 1994 .
[13] Robert L. Spilker,et al. Hybrid-stress eight-node elements for thin and thick multilayer laminated plates , 1982 .
[14] Theodore H. H. Pian,et al. Relations between incompatible displacement model and hybrid stress model , 1986 .
[15] Robert L. Spilker,et al. Hybrid-stress isoparametric elements for moderately thick and thin multilayer plates , 1986 .
[16] K. Y. Sze,et al. Hybrid‐stress six‐node prismatic elements , 2004 .
[17] T. Pian,et al. On the suppression of zero energy deformation modes , 1983 .