Minimum Weight Flat Antichains of Subsets
暂无分享,去创建一个
[1] B. Bollobás. On generalized graphs , 1965 .
[2] I. Anderson. Combinatorics of Finite Sets , 1987 .
[3] K. Topley. COMPUTATIONALLY EFFICIENT BOUNDS FOR THE SUM OF CATALAN NUMBERS , 2016, 1601.04223.
[4] Uwe Leck,et al. Maximal Antichains of Minimum Size , 2012, Electron. J. Comb..
[5] L. D. Meshalkin. Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[6] G. Katona. A theorem of finite sets , 2009 .
[7] Paulette Lieby. Extremal problems in finite sets , 2000, Bulletin of the Australian Mathematical Society.
[8] Jerrold R. Griggs,et al. Progress on poset-free families of subsets , 2016 .
[9] Ákos Kisvölcsey. Flattening Antichains , 2006, Comb..
[10] Paulette Lieby,et al. Antichains on Three Levels , 2004, Electron. J. Comb..
[11] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[12] Norihide Tokushige,et al. Minimum Shadows in Uniform Hypergraphs and a Generalization of the Takagi Function , 1995, J. Comb. Theory, Ser. A.
[13] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[14] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[15] Linyuan Lu,et al. Diamond-free families , 2010, J. Comb. Theory, Ser. A.
[16] Sven Hartmann,et al. Maximal Flat Antichains of Minimum Weight , 2009, Electron. J. Comb..
[17] G. F. Clements. The Minimal Number of Basic Elements in a Multiset Antichain , 1978, J. Comb. Theory, Ser. A.
[18] K. Engel. Sperner Theory , 1996 .