Minimum Weight Flat Antichains of Subsets

Building on classical theorems of Sperner and Kruskal-Katona, we investigate antichains F $\mathcal {F}$ in the Boolean lattice B n of all subsets of [ n ] : = { 1 , 2 , … , n } $[n]:=\{1,2,\dots ,n\}$ , where F $\mathcal {F}$ is flat, meaning that it contains sets of at most two consecutive sizes, say F = A ∪ B $\mathcal {F}=\mathcal {A}\cup {\mathscr{B}}$ , where A $\mathcal {A}$ contains only k -subsets, while B ${\mathscr{B}}$ contains only ( k − 1)-subsets. Moreover, we assume A $\mathcal {A}$ consists of the first m k -subsets in squashed (colexicographic) order, while B ${\mathscr{B}}$ consists of all ( k − 1)-subsets not contained in the subsets in A $\mathcal {A}$ . Given reals α , β > 0, we say the weight of F $\mathcal {F}$ is α ⋅ | A | + β ⋅ | B | $\alpha \cdot |\mathcal {A}|+\beta \cdot |{\mathscr{B}}|$ . We characterize the minimum weight antichains F $\mathcal {F}$ for any given n , k , α , β , and we do the same when in addition F $\mathcal {F}$ is a maximal antichain. We can then derive asymptotic results on both the minimum size and the minimum Lubell function.

[1]  B. Bollobás On generalized graphs , 1965 .

[2]  I. Anderson Combinatorics of Finite Sets , 1987 .

[3]  K. Topley COMPUTATIONALLY EFFICIENT BOUNDS FOR THE SUM OF CATALAN NUMBERS , 2016, 1601.04223.

[4]  Uwe Leck,et al.  Maximal Antichains of Minimum Size , 2012, Electron. J. Comb..

[5]  L. D. Meshalkin Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .

[6]  G. Katona A theorem of finite sets , 2009 .

[7]  Paulette Lieby Extremal problems in finite sets , 2000, Bulletin of the Australian Mathematical Society.

[8]  Jerrold R. Griggs,et al.  Progress on poset-free families of subsets , 2016 .

[9]  Ákos Kisvölcsey Flattening Antichains , 2006, Comb..

[10]  Paulette Lieby,et al.  Antichains on Three Levels , 2004, Electron. J. Comb..

[11]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[12]  Norihide Tokushige,et al.  Minimum Shadows in Uniform Hypergraphs and a Generalization of the Takagi Function , 1995, J. Comb. Theory, Ser. A.

[13]  Koichiro Yamamoto Logarithmic order of free distributive lattice , 1954 .

[14]  D. Lubell A Short Proof of Sperner’s Lemma , 1966 .

[15]  Linyuan Lu,et al.  Diamond-free families , 2010, J. Comb. Theory, Ser. A.

[16]  Sven Hartmann,et al.  Maximal Flat Antichains of Minimum Weight , 2009, Electron. J. Comb..

[17]  G. F. Clements The Minimal Number of Basic Elements in a Multiset Antichain , 1978, J. Comb. Theory, Ser. A.

[18]  K. Engel Sperner Theory , 1996 .