Fuzzy inferences methodologies for cognitive informatics and computational intelligence

A fuzzy inference is an extended form of formal inferences that enables symbolic and rigorous evaluation of the degree of a confidential level for a given causality on the basis of fuzzy expressions constructed with fuzzy sets and fuzzy logic operations. Fuzzy inferences are powerful denotational mathematical means for rigorously dealing with degrees of matters, uncertainties, and vague semantics of linguistic variables, as well as for precisely reasoning the semantics of fuzzy causalities. This paper presents a denotational mathematical framework of a set of mathematical structures of fuzzy inferences encompassing deductive, inductive, abductive, and analogical inferences. Each of the fuzzy inference processes is formally modeled and illustrated with real-world examples and cases of applications. The formalization of fuzzy inferences and methodologies enables machines to mimic complex human reasoning mechanisms in cognitive informatics, soft computing, and computational intelligence.

[1]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[2]  Richard Statman,et al.  Logic for computer scientists , 1989 .

[3]  Laurence Tianruo Yang,et al.  Fuzzy Logic with Engineering Applications , 1999 .

[4]  Yingxu Wang,et al.  RTPA: A Denotational Mathematics for Manipulating Intelligent and Computational Behaviors , 2008, Int. J. Cogn. Informatics Nat. Intell..

[5]  L. Zadeh Is there a need for fuzzy logic , 2008, NAFIPS 2008.

[6]  Yingxu Wang,et al.  On Abstract Intelligence: Toward a Unifying Theory of Natural, Artificial, Machinable, and Computational Intelligence , 2009, Int. J. Softw. Sci. Comput. Intell..

[7]  Grigoris Antoniou,et al.  Logic - a foundation for computer science , 1991, International Computer Science Series.

[8]  Lotfi A. Zadeh,et al.  Generalized theory of uncertainty (GTU) - principal concepts and ideas , 2006, Comput. Stat. Data Anal..

[9]  Lotfi A. Zadeh,et al.  Precisiated Natural Language , 2007, Aspects of Automatic Text Analysis.

[10]  Yingxu Wang,et al.  The Cognitive Processes of Formal Inferences , 2007, Int. J. Cogn. Informatics Nat. Intell..

[11]  Yiyu Yao,et al.  On the System Algebra Foundations for Granular Computing , 2009, Int. J. Softw. Sci. Comput. Intell..

[12]  Yingxu Wang,et al.  On Contemporary Denotational Mathematics for Computational Intelligence , 2008, Trans. Comput. Sci..

[13]  Yingxu Wang,et al.  Formal RTPA Models for a Set of Meta-Cognitive Processes of the Brain , 2008, Int. J. Cogn. Informatics Nat. Intell..

[14]  Yingxu Wang,et al.  The Real-Time Process Algebra (RTPA) , 2002, Ann. Softw. Eng..

[15]  Lotfi A. Zadeh,et al.  Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems , 1998, Soft Comput..

[16]  Yingxu Wang,et al.  Software Engineering Foundations: A Software Science Perspective , 2007 .

[17]  Lotfi A. Zadeh,et al.  Precisiated Natural Language (PNL) , 2004, AI Mag..

[18]  Yingxu Wang,et al.  On Cognitive Informatics , 2002, Proceedings First IEEE International Conference on Cognitive Informatics.

[19]  Shushma Patel,et al.  A layered reference model of the brain (LRMB) , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[20]  Lotfi A. Zadeh,et al.  From Computing with Numbers to Computing with Words - from Manipulation of Measurements to Manipulation of Perceptions , 2005, Logic, Thought and Action.

[21]  Yingxu Wang On the Big-R Notation for Describing Iterative and Recursive Behaviors , 2006, 2006 5th IEEE International Conference on Cognitive Informatics.

[22]  Witold Pedrycz,et al.  A Doctrine of Cognitive Informatics (CI) , 2009, Fundam. Informaticae.

[23]  Yingxu Wang,et al.  On System Algebra: A Denotational Mathematical Structure for Abstract System Modeling , 2008, Int. J. Cogn. Informatics Nat. Intell..

[24]  J. Heijenoort From Frege To Gödel , 1967 .

[25]  Jan A. Bergstra,et al.  Real time process algebra , 1991, Formal Aspects of Computing.

[26]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[27]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[28]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[29]  Robert G. Clark,et al.  Comparative Programming Languages , 2000 .

[30]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[31]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[32]  Yingxu Wang,et al.  On Concept Algebra: A Denotational Mathematical Structure for Knowledge and Software Modeling , 2008, Int. J. Cogn. Informatics Nat. Intell..

[33]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[34]  Yingxu Wang,et al.  The Theoretical Framework of Cognitive Informatics , 2007, Int. J. Cogn. Informatics Nat. Intell..

[35]  Yingxu Wang,et al.  Process-Based Software Engineering: Building the Infrastructures , 2002, Ann. Softw. Eng..

[36]  Yingxu Wang,et al.  A layered reference model of the brain , 2003, The Second IEEE International Conference on Cognitive Informatics, 2003. Proceedings..