Biomimetic robot navigation

In the past decade, a large number of robots has been built that explicitly implement biological navigation behaviours. We review these biomimetic approaches using a framework that allows for a common description of biological and technical navigation behaviour. The review shows that biomimetic systems make significant contributions to two fields of research: First, they provide a real world test of models of biological navigation behaviour; second, they make new navigation mechanisms available for technical applications, most notably in the field of indoor robot navigation. While simpler insect navigation behaviours have been implemented quite successfully, the more complicated way-finding capabilities of vertebrates still pose a challenge to current systems. ©2000 Elsevier Science B.V. All rights reserved.

[1]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[2]  G. D. Dunlap,et al.  Piloting and Dead Reckoning , 1970 .

[3]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[4]  M. Recce,et al.  Memory for places: A navigational model in support of Marr's theory of hippocampal function , 1996, Hippocampus.

[5]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[6]  Philippe Gaussier,et al.  PerAc: A neural architecture to control artificial animals , 1995, Robotics Auton. Syst..

[7]  Karl Friedrich Wender,et al.  Judging Spatial Relations from Memory , 1998, Spatial Cognition.

[8]  M. Srinivasan,et al.  Reflective surfaces for panoramic imaging. , 1997, Applied optics.

[9]  William H. Warren,et al.  Robot navigation from a Gibsonian viewpoint , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[10]  Thomas Röfer,et al.  Controlling a Robot With Image-based Homing , 1995 .

[11]  Hiroshi Kobayashi,et al.  An Autonomous Agent Navigating with a Polarized Light Compass , 1997, Adapt. Behav..

[12]  F. Dyer Bees acquire route-based memories but not cognitive maps in a familiar landscape , 1991, Animal Behaviour.

[13]  Thomas S. Collett,et al.  Landmark learning and guidance in insects , 1992 .

[14]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[15]  Bernhard Schölkopf,et al.  Where did I take that snapshot? Scene-based homing by image matching , 1998, Biological Cybernetics.

[16]  Karin Schweizer,et al.  Spatial Cognition: The Role of Landmark, Route, and Survey Knowledge in Human and Robot Navigation , 1997, GI Jahrestagung.

[17]  P. E. Sharp,et al.  Simulation of spatial learning in the Morris water maze by a neural network model of the hippocampal formation and nucleus accumbens , 1995, Hippocampus.

[18]  Heinrich H. Bülthoff,et al.  Simulation and robot implementation of visual orientation behaviors of flies , 1998 .

[19]  Karen Roberts,et al.  Centering behavior using peripheral vision , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Maja J. Matarić,et al.  Navigating with a rat brain: a neurobiologically-inspired model for robot spatial representation , 1991 .

[21]  Hanspeter A. Mallot,et al.  Navigation and Acquisition of Spatial Knowledge in a Virtual Maze , 1998, Journal of Cognitive Neuroscience.

[22]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[23]  Benjamin Kuipers,et al.  A Hierarchy of Qualitative Representations for Space , 1998, Spatial Cognition.

[24]  Allen M. Waxman,et al.  A view-based neurocomputational system for relational map-making and navigation in visual environments , 1995, Robotics Auton. Syst..

[25]  Eric Chown,et al.  Prototypes, location, and associative networks (PLAN): Towards a unified theory of cognitive mapping , 1995 .

[26]  PerspectivesHanspeter A. MallotMax Behavior{oriented Approaches to Cognition: Theoretical Perspectives , 1997 .

[27]  C. Gallistel The organization of learning , 1990 .

[28]  RU Muller,et al.  The hippocampus as a cognitive graph , 1996, The Journal of general physiology.

[29]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[30]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[31]  Ulrich Nehmzow,et al.  Landmark-based navigation for a mobile robot , 1998 .

[32]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[33]  Jean-Arcady Meyer,et al.  Navigating With a Rat Brain: A Neurobiologically-Inspired Model for Robot Spatial Representation , 1991 .

[34]  J O'Keefe,et al.  Robotic and neuronal simulation of the hippocampus and rat navigation. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  David C. Krakauer,et al.  Simple connectionist models of spatial memory in bees , 1995 .

[36]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[37]  Gregor Schöner,et al.  Neural dynamics parametrically controlled by image correlations organize robot navigation , 1996, SNN Symposium on Neural Networks.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[40]  A. Kühn Die Orientierung der Tiere im Raum , 1919 .

[41]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[42]  B. McNaughton,et al.  Hebb-Marr networks and the neurobiological representation of action in space. , 1990 .

[43]  E. Tolman,et al.  Studies in spatial learning: Orientation and the short-cut. , 1946, Journal of experimental psychology.

[44]  B. Poucet Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. , 1993, Psychological review.

[45]  Barbara Webb,et al.  Using robots to model animals: a cricket test , 1995, Robotics Auton. Syst..

[46]  Dimitrios Lambrinos,et al.  Modeling ant navigation with an autonomous agent , 1998 .

[47]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[48]  R. Sutherland,et al.  Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia , 1989, Psychobiology.

[49]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[50]  David Kortenkamp,et al.  Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping , 1995, Cogn. Sci..

[51]  E. Tolman,et al.  Studies in spatial learning. I. Orientation and the short-cut. 1946. , 1992, Journal of experimental psychology. General.

[52]  Svetha Venkatesh,et al.  Insect inspired behaviours for the autonomous control of mobile robots , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[53]  Edward M. Riseman,et al.  Image-based homing , 1992 .

[54]  Tony J. Prescott,et al.  Spatial Representation for Navigation in Animats , 1996, Adapt. Behav..

[55]  Bernhard Schölkopf,et al.  View-based cognitive map learning by an autonomous robot , 1995 .

[56]  Thomas Röfer,et al.  Controlling a Wheelchair with Image-based Homing , 1997 .

[57]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[58]  P. Colgan,et al.  Animal Homing , 1992, Chapman & Hall Animal Behaviour Series.

[59]  T. Michael Knasel,et al.  Robotics and autonomous systems , 1988, Robotics Auton. Syst..

[60]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[61]  Barbara Webb,et al.  Simulated and situated models of chemical trail following in ants , 1998 .

[62]  Bernhard Schölkopf,et al.  View-Based Cognitive Mapping and Path Planning , 1995, Adapt. Behav..

[63]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[64]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[65]  Bernhard Schölkopf,et al.  Learning View Graphs for Robot Navigation , 1997, AGENTS '97.

[66]  Benjamin Kuipers,et al.  A Robust, Qualitative Method for Robot Spatial Learning , 1988, AAAI.

[67]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[68]  M. Arbib,et al.  Multiple representations of space underlying behavior , 1982, Behavioral and Brain Sciences.

[69]  Michael Recce,et al.  A model of hippocampal function , 1994, Neural Networks.