Soft Computing: Goal, Tools and Feasibility

This paper discusses what soft computing is, the need for soft computing and real world computing (RWC) systems, the essential ingredients necessary to realise this, ie, neural networks, fuzzy logic and probabilistic reasoning and their role in soft computing. The development of hybrid computational paradigms are also explored and they are projected as a frontier research area in the evolution of sixth generation computing systems.

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  Heinz Mühlenbein,et al.  Limitations of multi-layer perceptron networks-steps towards genetic neural networks , 1990, Parallel Comput..

[3]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition : methods that search for structures in data , 1992 .

[4]  James M. Keller,et al.  Neural network implementation of fuzzy logic , 1992 .

[5]  Edward T. Lee,et al.  Fuzzy Neural Networks , 1975 .

[6]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[7]  Jorma Laaksonen,et al.  Variants of self-organizing maps , 1990, International 1989 Joint Conference on Neural Networks.

[8]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[9]  Abdollah Homaifar,et al.  Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[10]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[11]  Sankar K. Pal,et al.  X-tron: an incremental connectionist model for category perception , 1995, IEEE Trans. Neural Networks.

[12]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[13]  Madan M. Gupta,et al.  On fuzzy neuron models , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[14]  Allen Gersho,et al.  Competitive learning and soft competition for vector quantizer design , 1992, IEEE Trans. Signal Process..

[15]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[16]  Sankar K. Pal,et al.  Genetic algorithms with fuzzy fitness function for object extraction using cellular networks , 1994, CVPR 1994.

[17]  James M. Keller,et al.  Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks , 1992, Int. J. Approx. Reason..

[18]  Ronald R. Yager,et al.  Fuzzy sets, neural networks, and soft computing , 1994 .

[19]  Sankar K. Pal,et al.  Self-organization for object extraction using a multilayer neural network and fuzziness measures , 1993, IEEE Trans. Fuzzy Syst..

[20]  Stephen Grossberg,et al.  The ART of adaptive pattern recognition by a self-organizing neural network , 1988, Computer.

[21]  Sankar K. Pal,et al.  Modeling of component failure in neural networks for robustness evaluation: an application to object extraction , 1995, IEEE Trans. Neural Networks.

[22]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[23]  C. L. Karr,et al.  Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..

[24]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[25]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[26]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[27]  James C. Bezdek,et al.  Generalized clustering networks and Kohonen's self-organizing scheme , 1993, IEEE Trans. Neural Networks.

[28]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1994, Pattern Recognit..

[29]  Geoffrey E. Hinton,et al.  A time-delay neural network architecture for isolated word recognition , 1990, Neural Networks.