Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates

This work presents a new approach for premixed turbulent combustion modeling based on convolutional neural networks (CNN).1 We first propose a framework to reformulate the problem of subgrid flame surface density estimation as a machine learning task. Data needed to train the CNN is produced by direct numerical simulations (DNS) of a premixed turbulent flame stabilized in a slot-burner configuration. A CNN inspired from a U-Net architecture is designed and trained on the DNS fields to estimate subgrid-scale wrinkling. It is then tested on an unsteady turbulent flame where the mean inlet velocity is increased for a short time and the flame must react to a varying turbulent incoming flow. The CNN is found to efficiently extract the topological nature of the flame and predict subgrid-scale wrinkling, outperforming classical algebraic models.

[1]  W. Pratt Digital Image Processing: Piks Scientific Inside , 1978 .

[2]  K. Bray,et al.  A unified statistical model of the premixed turbulent flame , 1977 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Denis Veynante,et al.  Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion , 2011 .

[5]  G. Bruneaux,et al.  Premixed flame–wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling , 1997, Journal of Fluid Mechanics.

[6]  Stephen B. Pope,et al.  The evolution of surfaces in turbulence , 1988 .

[7]  F. C. Gouldin,et al.  Chemical Closure Model for Fractal Flamelets , 1989 .

[8]  D. Veynante,et al.  Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion , 1998 .

[9]  Thierry Poinsot,et al.  Quenching processes and premixed turbulent combustion diagrams , 1991, Journal of Fluid Mechanics.

[10]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[11]  Ghassan Hamarneh,et al.  Select, Attend, and Transfer: Light, Learnable Skip Connections , 2018, MLMI@MICCAI.

[12]  Charles Meneveau,et al.  A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion , 2004 .

[13]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[14]  Markus Klein,et al.  Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames , 2018, J. Comput. Phys..

[15]  Xiaoxiao Li,et al.  Semantic Image Segmentation via Deep Parsing Network , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  Michael Rudgyard,et al.  Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP , 1999 .

[17]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[18]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[19]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[20]  Olivier Colin,et al.  Development of High-Order Taylor-Galerkin Schemes for LES , 2000 .

[21]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[22]  C. Meneveau,et al.  A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests , 2002 .

[23]  Thierry Poinsot,et al.  Comparison of Nonreflecting Outlet Boundary Conditions for Compressible Solvers on Unstructured Grids , 2010 .

[24]  Anand Pratap Singh,et al.  New Approaches in Turbulence and Transition Modeling Using Data-driven Techniques , 2015 .

[25]  Thierry Poinsot,et al.  COHERENT FLAMELET MODEL: APPLICATIONS AND RECENT EXTENSIONS , 1990 .

[26]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[27]  Thierry Poinsot,et al.  A comparison of flamelet models for premixed turbulent combustion , 1993 .

[28]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[29]  Christophe Eric Corre,et al.  Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures , 2017 .

[30]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[32]  T. Passot,et al.  Numerical simulation of compressible homogeneous flows in the turbulent regime , 1987, Journal of Fluid Mechanics.

[33]  C. Meneveau,et al.  A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation , 2002 .

[34]  F. E. Marble,et al.  The coherent flame model for turbulent chemical reactions. Final report 1 Mar 75--31 Jan 77 , 1977 .

[35]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[36]  Omer San,et al.  A neural network approach for the blind deconvolution of turbulent flows , 2017, Journal of Fluid Mechanics.

[37]  R. Koch,et al.  Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes , 2004 .

[38]  N. Peters Laminar flamelet concepts in turbulent combustion , 1988 .

[39]  Jennifer Chu-Carroll,et al.  Building Watson: An Overview of the DeepQA Project , 2010, AI Mag..

[40]  A. Kerstein,et al.  Field equation for interface propagation in an unsteady homogeneous flow field. , 1988, Physical review. A, General physics.

[41]  Karthik Duraisamy,et al.  Turbulence Modeling in the Age of Data , 2018, Annual Review of Fluid Mechanics.

[42]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[43]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[44]  Ömer L. Gülder,et al.  Inner cutoff scale of flame surface wrinkling in turbulent premixed flames , 1995 .

[45]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[46]  S. Candel,et al.  Vortex-driven acoustically coupled combustion instabilities , 1987, Journal of Fluid Mechanics.

[47]  T. Poinsot,et al.  Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame , 2012 .