Frequency-dependence of large-signal properties in lead-free piezoceramics

The dependence of large signal properties of (1−x)(0.81Bi1/2Na1/2TiO3-0.19Bi1/2K1/2TiO3)-xBi(Zn1/2Ti1/2)O3 with x = 0.02, 0.03, and 0.04 on the measurement frequency was investigated for a wide range of frequencies from 0.1 Hz to 100 Hz. A significant frequency dispersion in the characteristic parameters representatively maximum and coercive values was denoted. On extension with the temperature dependent dielectric permittivity measurement, it was shown that the observed frequency dependence is primarily correlated with the dynamics of field-induced phase transition from a relaxor state to a long-range ferroelectric state. Increasing the substitutional disorder introduced by Bi(Zn1/2Ti1/2)O3 addition was demonstrated to pronounce the frequency dependence. It was proposed that the change be due to the increase in random fields and consequent dominance of ergodicity, based on the frequency-dependent hysteresis measurements at an elevated temperature above so-called induced-ferroelectric-to-relaxor transition temperature.

[1]  Jacob L. Jones,et al.  Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic , 2009 .

[2]  L. E. Cross,et al.  High-frequency strain response in ferroelectrics and its measurement using a modified Mach-Zehnder interferometer , 1989 .

[3]  K. Uchino,et al.  Effects of rare earth metal substituents on the piezoelectric and polarization properties of Pb(Zr,Ti)O3–Pb(Sb,Mn)O3 ceramics , 2002 .

[4]  Paul D. Wilcox,et al.  Ultrasonic arrays for non-destructive evaluation: A review , 2006 .

[5]  Hartmut Fuess,et al.  Field-induced phase transition in Bi1/2Na1/2TiO3- based lead-free piezoelectric ceramics , 2010 .

[6]  Mohamed S. Gadala,et al.  Self-heat generation in piezoelectric stack actuators used in fuel injectors , 2009 .

[7]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .

[8]  W. Jo,et al.  Influence of electric fields on the depolarization temperature of Mn-doped (1-x)Bi1/2Na1/2TiO3-xBaTiO3 , 2012 .

[9]  M. Suchomel,et al.  Bi2ZnTiO6: A Lead-Free Closed-Shell Polar Perovskite with a Calculated Ionic Polarization of 150 μC cm-2 , 2006 .

[10]  Genshui Wang,et al.  Scaling behaviors of dynamic hysteresis in Zr-rich lead zirconate titanate bulk ceramics , 2009 .

[11]  J. Scott Models for the frequency dependence of coercive field and the size dependence of remanent polarization in ferroelectric thin films , 1996 .

[12]  John E. Daniels,et al.  Relaxor Characteristics of Morphotropic Phase Boundary (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Modified with Bi(Zn1/2Ti1/2)O3 , 2011 .

[13]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[14]  Aman Ullah,et al.  Phase transitions and large electric field-induced strain in BiAlO3-modified Bi0.5(Na, K)0.5TiO3 lead-free piezoelectric ceramics , 2010 .

[15]  Dwight D. Viehland,et al.  Random-field model for ferroelectric domain dynamics and polarization reversal , 2000 .

[16]  H. Tzou,et al.  Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems , 2004 .

[17]  R. O'Kennedy,et al.  Advances in biosensors for detection of pathogens in food and water , 2003 .

[18]  A. Bell,et al.  Electric-field-induced phase switching in the lead free piezoelectric potassium sodium bismuth titanate , 2010 .

[19]  Dragan Damjanovic,et al.  Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics , 2009, Journal of Applied Physics.

[20]  Helmut Ehrenberg,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties , 2008 .

[21]  W. Jo,et al.  Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3―6%BaTiO3 , 2011 .

[22]  K. Uchino,et al.  Substituent-introduction of “hard” polarization characteristics in “soft” Pb(BIBII)O3–PbTiO3 ferroelectric ceramics , 2001 .

[23]  Hajime Nagata,et al.  Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions , 2008 .

[24]  Yongyut Laosiritaworn,et al.  Stress-dependent scaling behavior of dynamic hysteresis in bulk soft ferroelectric ceramic , 2006 .

[25]  Hartmut Fuess,et al.  In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi-Based Lead-Free Piezoceramics , 2010 .

[26]  Aman Ullah,et al.  Effects of Hafnium Substitution on Dielectric and Electromechanical Properties of Lead-free Bi0.5(Na0.78K0.22)0.5(Ti1-xHfx)O3 Ceramics , 2010 .

[27]  Mohamed S. Gadala,et al.  Thermo-electro-mechanical Performance of Piezoelectric Stack Actuators for Fuel Injector Applications , 2009 .

[28]  Etsuo Otsuki,et al.  Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 Systems , 1999 .

[29]  W. Jo,et al.  Effect of K0.5Na0.5NbO3 on Properties at and off the Morphotropic Phase Boundary in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 Ceramics , 2011 .

[30]  D. Chan,et al.  Immunosensors--principles and applications to clinical chemistry. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[31]  Wook Jo,et al.  On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3 , 2011 .

[32]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[33]  Aman Ullah,et al.  Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics , 2010 .

[34]  G. Smolensky,et al.  New ferroelectrics of complex composition. IV , 1961 .

[35]  90° domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process , 2003, cond-mat/0311162.

[36]  A. Safari,et al.  Piezoelectric composites for sensor and actuator applications , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[37]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[38]  Dwight Viehland,et al.  Relaxational polarization dynamics in soft ferroelectrics , 2000 .

[39]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[40]  Hajime Nagata,et al.  Current status and prospects of lead-free piezoelectric ceramics , 2005 .

[41]  Wook Jo,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties , 2008 .