Recognizable Picture Languages and Polyominoes

An irrigation system includes an irrigation line and a wind brace assembly which can be automatically disengaged from the irrigation line preparatory to moving the irrigation line across a field to a new position. The assembly is automatically engaged with the irrigation line in the new position to prevent wind from moving the irrigation line.

[1]  Antonio Restivo,et al.  Reconstruction of L-convex Polyominoes , 2003, Electron. Notes Discret. Math..

[2]  Attila Kuba,et al.  Reconstruction of convex 2D discrete sets in polynomial time , 2002, Theor. Comput. Sci..

[3]  Antonio Restivo,et al.  A Tomographical Characterization of L-Convex Polyominoes , 2005, DGCI.

[4]  Jean-Pierre Nadal,et al.  Exact results for 2D directed animals on a strip of finite width , 1983 .

[5]  Maurice Nivat,et al.  Reconstructing Convex Polyominoes from Horizontal and Vertical Projections , 1996, Theor. Comput. Sci..

[6]  Antonio Restivo,et al.  Combinatorial aspects of L-convex polyominoes , 2007, Eur. J. Comb..

[7]  Antonio Restivo,et al.  Ordering and Convex Polyominoes , 2004, MCU.

[8]  Jozef Gruska,et al.  Mathematical Foundations of Computer Science 1998 , 1998, Lecture Notes in Computer Science.

[9]  Oliver Matz On Piecewise Testable, Starfree, and Recognizable Picture Languages , 1998, FoSSaCS.

[10]  Klaus Reinhardt On Some Recognizable Picture-Languages , 1998, MFCS.

[11]  Klaus Reinhardt The #a = #b Pictures Are Recognizable , 2001, STACS.

[12]  Antonio Restivo,et al.  Enumeration of L-convex polyominoes. II. Bijection and area. , 2005 .

[13]  Mireille Bousquet-Mélou,et al.  A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..

[14]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[15]  S. W. Golomb,et al.  Checker Boards and Polyominoes , 1954 .

[16]  Antonio Restivo,et al.  Enumeration of L-convex polyominoes by rows and columns , 2005, Theor. Comput. Sci..

[17]  Maurice Nivat,et al.  The number of convex polyominoes reconstructible from their orthogonal projections , 1996, Discret. Math..

[18]  Danièle Beauquier,et al.  Tiling the plane with one tile , 1990, SCG '90.

[19]  Antonio Restivo,et al.  Enumeration of L-convex polyominoes , 2004 .

[20]  Andrea Frosini,et al.  On the Tiling System Recognizability of Various Classes of Convex Polyominoes , 2009 .

[21]  Antonio Restivo,et al.  Two-Dimensional Languages , 1997, Handbook of Formal Languages.

[22]  S. Golomb Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .

[23]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[24]  Robin Milner,et al.  Theories for the Global Ubiquitous Computer , 2004, FoSSaCS.