MacaquesBetween Humans and Rhesus Conserved MHC Class I Peptide Binding

Chesnut, David I. Watkins and Alessandro SetteJohn L. Dzuris, John Sidney, Ettore Appella, Robert W.http://www.jimmunol.org/content/164/1/283J Immunol€2000; 164:283-291; ;Referenceshttp://www.jimmunol.org/content/164/1/283.full#ref-list-1This article cites 54 articles, 21 of which you can access for free at: Subscriptionshttp://jimmunol.org/subscriptionsInformation about subscribing to The Journal of Immunology is online at: Permissionshttp://www.aai.org/ji/copyright.htmlSubmit copyright permission requests at: Email Alertshttp://jimmunol.org/cgi/alerts/etocReceive free email-alerts when new articles cite this article. Sign up at:

[1]  K. Parker,et al.  HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. , 1993, Journal of immunology.

[2]  J. Sidney,et al.  Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism , 1999, Immunogenetics.

[3]  A Sette,et al.  Human class I supertypes and CTL repertoires extend to chimpanzees. , 1998, Journal of immunology.

[4]  P Parham,et al.  Analysis of a successful immune response against hepatitis C virus. , 1999, Immunity.

[5]  N. Suciu-Foca,et al.  Naturally processed HLA class I bound peptides from c-myc-transfected cells reveal allele-specific motifs. , 1993, Journal of immunology.

[6]  G. Brownlee,et al.  Characterization of two distinct major histocompatibility complex class I Kk-restricted T-cell epitopes within the influenza A/PR/8/34 virus hemagglutinin , 1991, Journal of virology.

[7]  A. Hughes,et al.  Definition of an epitope and MHC class I molecule recognized by gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. , 1991, Journal of immunology.

[8]  P. Coulie,et al.  The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas , 1993, The Journal of experimental medicine.

[9]  V. Gnau,et al.  Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs , 2004, Immunogenetics.

[10]  D. R. Madden,et al.  The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation , 1991, Nature.

[11]  A. Vitiello,et al.  The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. , 1994, Journal of immunology.

[12]  H. Rammensee,et al.  Comparison of the H-2Kk- and H-2Kkm1-restricted peptide motifs. , 1993, Journal of immunotherapy with emphasis on tumor immunology : official journal of the Society for Biological Therapy.

[13]  D. R. Madden,et al.  Identification of self peptides bound to purified HLA-B27 , 1991, Nature.

[14]  D. Ho,et al.  Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry , 1997, Journal of virology.

[15]  R. Hunter,et al.  Use of the rhesus monkey as an experimental model to test the degree of efficacy of an anti-sporozoite peptide malaria vaccine candidate combined with copolymer-based adjuvants. , 1995, The American journal of tropical medicine and hygiene.

[16]  A Sette,et al.  Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. , 1996, Immunology today.

[17]  A. Hughes,et al.  The MHC class I genes of the rhesus monkey. Different evolutionary histories of MHC class I and II genes in primates. , 1996, Journal of immunology.

[18]  D. Wiley,et al.  Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. , 1991, Journal of molecular biology.

[19]  William S. Lane,et al.  Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle , 1992, Nature.

[20]  P. Driscoll,et al.  Precise prediction of a Kk-restricted cytotoxic T cell epitope in the NS1 protein of influenza virus using an MHC allele-specific motif. , 1993, Virology.

[21]  M. Shapiro,et al.  Recombinant vaccine against hepatitis E: dose response and protection against heterologous challenge. , 1997, Vaccine.

[22]  V. Arankalle,et al.  Cross‐challenge studies in rhesus monkeys employing different Indian isolates of hepatitis E virus , 1995, Journal of medical virology.

[23]  D. Wiley,et al.  The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2 , 1993, Cell.

[24]  V. Gnau,et al.  Peptide motifs of HLA-A1,-A11,-A31, and-A33 molecules , 1994, Immunogenetics.

[25]  K. Parker,et al.  Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Kodama,et al.  A helper T‐cell antigen enhances generation of hepatitis C virus‐specific cytotoxic T lymphocytes in vitro , 1995, Journal of medical virology.

[27]  E. Padlan,et al.  Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex , 1992, The Journal of experimental medicine.

[28]  G Hermanson,et al.  Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. , 1995, Journal of immunology.

[29]  M F del Guercio,et al.  Several HLA alleles share overlapping peptide specificities. , 1995, Journal of immunology.

[30]  E. Murray,et al.  The SIV‐infected rhesus monkey model for HIV‐associated dementia and implications for neurological diseases , 1999, Journal of leukocyte biology.

[31]  P. Cresswell,et al.  Mechanisms of MHC class I--restricted antigen processing. , 1998, Annual review of immunology.

[32]  E. Padlan,et al.  H-2Dd exploits a four residue peptide binding motif , 1993, The Journal of experimental medicine.

[33]  V. Gnau,et al.  Peptide motifs of HLA-B58, B60, B61, and B62 molecules , 2004, Immunogenetics.

[34]  Didier Rognan,et al.  Fine specificity of antigen binding to two class I major histocompatibility proteins (B*2705 and B*2703) differing in a single amino acid residue , 1997, J. Comput. Aided Mol. Des..

[35]  C. Bordignon,et al.  Characterization of natural peptide ligands for HLA-B*4402 and -B*4403: implications for peptide involvement in allorecognition of a single amino acid change in the HLA-B44 heavy chain. , 1994, Tissue antigens.

[36]  S. Zolla-Pazner,et al.  Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor , 1997, Journal of virology.

[37]  Hans-Georg Rammensee,et al.  MHC ligands and peptide motifs: first listing , 2004, Immunogenetics.

[38]  R. Desrosiers,et al.  Comparative biology of natural and experimental SIVmac infection in macaque monkeys: a review. , 1990, Journal of medical primatology.

[39]  E. Adams,et al.  The Origins of HLA‐A,B,C Polymorphism , 1995, Immunological reviews.

[40]  H. Rammensee,et al.  Peptide motifs of HLA-B38 and B39 molecules , 2004, Immunogenetics.

[41]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.

[42]  A. Townsend,et al.  Antigen recognition by class I-restricted T lymphocytes. , 1989, Annual review of immunology.

[43]  A Sette,et al.  Definition of specific peptide motifs for four major HLA-A alleles. , 1994, Journal of immunology.

[44]  Todd M. Allen,et al.  Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus. , 1998, Journal of immunology.

[45]  R. Desrosiers,et al.  Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. , 1985, Science.

[46]  D. Nixon,et al.  Cytotoxic T lymphocyte epitopes shared between HIV-1, HIV-2, and SIV. , 1993, Journal of medical primatology.

[47]  C. Griscelli,et al.  Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. , 1984, Science.

[48]  Todd M. Allen,et al.  Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef , 1999, Nature Medicine.

[49]  K. Parker,et al.  Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. , 1994, Journal of immunology.

[50]  J. Sidney,et al.  HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. , 1998, Current opinion in immunology.

[51]  B. Johnson,et al.  Animal models of Lyme disease: pathogenesis and immunoprophylaxis. , 1994, Trends in microbiology.

[52]  K. Parker,et al.  The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues. , 1994, The Journal of biological chemistry.

[53]  Y. Ito,et al.  A nonhuman primate model for human cerebral malaria: rhesus monkeys experimentally infected with Plasmodium fragile. , 1994, Experimental parasitology.

[54]  F. Greenwood,et al.  THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. , 1963, The Biochemical journal.

[55]  A. Osterhaus,et al.  Towards an HIV-1 vaccine: lessons from studies in macaque models. , 1998, Vaccine.