Different Molecular Mechanisms Account for Drought Tolerance in Coffea canephora var. Conilon

[1]  Maria Amélia Gava Ferrão,et al.  EMCAPA 8141 - ROBUSTÃO CAPIXABA, VARIEDADE CLONAL DE CAFÉ CONILON TOLERANTE À SECA, DESENVOLVIDA PARA O ESTADO DO ESPÍRITO SANTO / EMCAPA 8141 - ROBUSTÃO CAPIXABA: A CLONED VARIETY OF DROUGHT-TOLERANT CONILON COFFE IN ESPIRITO SANTO , 2015 .

[2]  P. C. Cavatte,et al.  The functional divergence of biomass partitioning, carbon gain and water use in Coffea canephora in response to the water supply: Implications for breeding aimed at improving drought tolerance , 2013 .

[3]  P. Mazzafera,et al.  Dehydrins Are Highly Expressed in Water-Stressed Plants of Two Coffee Species , 2012, Tropical Plant Biology.

[4]  D. Pot,et al.  Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora , 2012, Journal of experimental botany.

[5]  Daniel Furtado Ferreira,et al.  Sisvar: a computer statistical analysis system , 2011 .

[6]  Jie Ren,et al.  Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress , 2011, Journal of experimental botany.

[7]  Zhulong Chan,et al.  Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes , 2011, Journal of experimental botany.

[8]  D. Pot,et al.  RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress , 2011, BMC Plant Biology.

[9]  J. Schroeder,et al.  Evolution of Abscisic Acid Synthesis and Signaling Mechanisms , 2011, Current Biology.

[10]  D. Pot,et al.  Effects of water stress on bean biochemical composition Coffea arabica Cv. Rubi , 2011 .

[11]  J. Burkhardt,et al.  Stomatal Characteristics in Arabica Coffee Germplasm Accessions under Contrasting Environments at Jimma, Southwestern Ethiopia , 2011 .

[12]  Eric K. Tokuda,et al.  An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora , 2011, BMC Plant Biology.

[13]  F. Damatta,et al.  Impacts of climate changes on crop physiology and food quality , 2010 .

[14]  F. M. DaMatta,et al.  Resposta fisiológica de clone de café Conilon sensível à deficiência hídrica enxertado em porta-enxerto tolerante , 2010 .

[15]  I. Pais,et al.  Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. , 2010, Journal of plant physiology.

[16]  Y. Liu,et al.  A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica. , 2009, Plant biology.

[17]  R. V. Ribeiro,et al.  Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions , 2009, Photosynthetica.

[18]  C. Dordas Nonsymbiotic hemoglobins and stress tolerance in plants. , 2009, Plant science : an international journal of experimental plant biology.

[19]  P. Broun,et al.  Evaluation of Conilons for genetic diversity, cup quality and biochemical composition. , 2009 .

[20]  I. Maia,et al.  Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions , 2009, BMC Molecular Biology.

[21]  J. D. Alves,et al.  Avaliações anatômicas foliares em mudas de café 'catuaí' e 'siriema' submetidasao estresse hídrico , 2008 .

[22]  N. Baker Chlorophyll fluorescence: a probe of photosynthesis in vivo. , 2008, Annual review of plant biology.

[23]  J. Hancock,et al.  Nitric oxide, stomatal closure, and abiotic stress. , 2007, Journal of experimental botany.

[24]  Jianhua Zhang,et al.  Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. , 2007, The New phytologist.

[25]  J. Waller,et al.  Coffee Pests, Diseases and their Management , 2007 .

[26]  V. Silva Caracterização fisiológica da tolerância à seca em Coffea canephora: contribuição relativa do sistema radicular e da parte aérea , 2007 .

[27]  M. Loureiro,et al.  Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves , 2006 .

[28]  José C. Ramalho,et al.  Impacts of drought and temperature stress on coffee physiology and production: a review , 2006 .

[29]  P. Arruda,et al.  Brazilian coffee genome project: an EST-based genomic resource , 2006 .

[30]  M. Loureiro,et al.  Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. , 2005, Annals of botany.

[31]  L. Mattoso,et al.  The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans , 2005 .

[32]  K. Shinozaki,et al.  Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. , 2005, Trends in plant science.

[33]  M. Loureiro,et al.  Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought , 2004 .

[34]  Eduardo Delgado Assad,et al.  Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil , 2004 .

[35]  M. Loureiro,et al.  Drought tolerance of two field-grown clones of Coffea canephora , 2003 .

[36]  T. Altmann,et al.  The Subtilisin-Like Serine Protease SDD1 Mediates Cell-to-Cell Signaling during Arabidopsis Stomatal Development Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001016. , 2002, The Plant Cell Online.

[37]  D. Lawlor Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. , 2002, Annals of botany.

[38]  M. Loureiro,et al.  Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions , 2002 .

[39]  Wendell Q. Sun,et al.  Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms. , 2002, Journal of experimental botany.

[40]  K. Shinozaki,et al.  Gene Expression and Signal Transduction in Water-Stress Response , 1997, Plant physiology.

[41]  T. Close Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins , 1996 .

[42]  H. Bohnert,et al.  Strategies for engineering water-stress tolerance in plants , 1996 .

[43]  C. Montagnon,et al.  Réaction à la sécheresse de jeunes caféiers Coffea canephora de Côte d'Ivoire appartenant à différents groupes génétiques , 1993 .