Hybrid procedures for solving linear systems

Summary. In this paper, we introduce the notion of hybrid procedures for solving a system of linear equations. A hybrid procedure consists in a combination of two arbitrary approximate solutions with coefficients summing up to one. Thus the combination only depends on one parameter whose value is chosen in order to minimize the Euclidean norm of the residual vector obtained by the hybrid procedure. Properties of such procedures are studied in detail. The two approximate solutions which are combined in a hybrid procedure are usually obtained by two iterative methods. Several strategies for combining these two methods together or with the previous iterate of the hybrid procedure itself are discussed and their properties are analyzed. Numerical experiments illustrate the various procedures.

[1]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[2]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[3]  Joseph Henry Wegstein,et al.  Accelerating convergence of iterative processes , 1958, CACM.

[4]  D. Faddeev,et al.  Computational Methods of Linear Algebra , 1959 .

[5]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[6]  Über eine Klasse von Iterationsverfahren , 1964 .

[7]  Robert Todd Gregory,et al.  A collection of matrices for testing computational algorithms , 1969 .

[8]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[9]  C. Groetsch Some Aspects of Mann's Iterative Method for Approximating Fixed Points , 1977 .

[10]  C. Brezinski Padé-type approximation and general orthogonal polynomials , 1980 .

[11]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[12]  Willi Schönauer,et al.  Scientific computing on vector computers , 1987, Special topics in supercomputing.

[13]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[14]  W. B. Bearhart,et al.  Acceleration schemes for the method of alternating projections , 1989 .

[15]  Achiya Dax,et al.  Line search acceleration of iterative methods , 1990 .

[16]  Jonathan M. Borwein,et al.  Fixed point iterations for real functions , 1991 .

[17]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[18]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[19]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[20]  J. Borwein,et al.  Krasnoselski-Mann Iterations in Normed Spaces , 1992, Canadian Mathematical Bulletin.

[21]  Gene H. Golub,et al.  Recent advances in Lanczos-based iterative methods for nonsymmetric linear systems , 1992 .

[22]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[23]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[24]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[25]  Rüdiger Weiss,et al.  Properties of generalized conjugate gradient methods , 1994, Numer. Linear Algebra Appl..

[26]  Rüdiger Weiss,et al.  Error-Minimizing Krylov Subspace Methods , 1994, SIAM J. Sci. Comput..

[27]  Homer F. Walker,et al.  Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..