The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials

In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields across the fracture as a strong discontinuity. We enhance the pressure in the fracture by including an additional degree of freedom. The pressure gradient due to fluid leakage near the fracture surface is reconstructed based on Terzaghi’s consolidation solution. With this numerical formulation we ensure that all fluid flow goes exclusively in the fracture and it is not necessary to use a dense mesh near the fracture to capture the pressure gradient. Fluid flow in the rock formation is described by Darcy’s law. The fracture process is governed by a cohesive traction–separation law. The performance of the numerical model for fluid driven fractures is shown in three numerical examples. c

[1]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[2]  Emmanuel M Detournay,et al.  The crack tip region in hydraulic fracturing , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  René de Borst,et al.  A large deformation formulation for fluid flow in a progressively fracturing porous material , 2013 .

[4]  Jmrj Jacques Huyghe,et al.  2D Mode I crack propagation in saturated ionized porous media using partition of unity finite elements , 2012 .

[5]  F. Kraaijeveld Propagating discontinuities in ionized porous media , 2009 .

[6]  Ernst Huenges,et al.  Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications , 2005 .

[7]  M. K. Rahman,et al.  Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells , 2002 .

[8]  Jjc Joris Remmers,et al.  Discontinuities in materials and structures: A unifying computational approach , 2006 .

[9]  Jose Adachi,et al.  Computer simulation of hydraulic fractures , 2007 .

[10]  Ignacio Carol,et al.  On zero‐thickness interface elements for diffusion problems , 2004 .

[11]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[12]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[13]  E. Sarris,et al.  The influence of the cohesive process zone in hydraulic fracturing modelling , 2011 .

[14]  T. K. Perkins,et al.  Widths of Hydraulic Fractures , 1961 .

[15]  Jmrj Jacques Huyghe,et al.  A Partition of Unity-Based Model for Crack Nucleation and Propagation in Porous Media, Including Orthotropic Materials , 2015, Transport in Porous Media.

[16]  J. M. Huyghe,et al.  Propagating Cracks in Saturated Ionized Porous Media , 2011 .

[17]  Emmanuel M Detournay,et al.  Plane strain propagation of a hydraulic fracture in a permeable rock , 2008 .

[18]  A. Khristianovic Zheltov,et al.  3. Formation of Vertical Fractures by Means of Highly Viscous Liquid , 1955 .

[19]  J. S. Y. Wang,et al.  Validity of cubic law for fluid flow in a deformable rock fracture. Technical information report No. 23 , 1979 .

[20]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[21]  Julien Réthoré,et al.  A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium , 2006 .

[22]  J. Geertsma,et al.  A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures , 1969 .

[23]  A. Khoei,et al.  An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model , 2013 .

[24]  Emmanuel M Detournay,et al.  Toughness-dominated Hydraulic Fracture with Leak-off , 2005 .

[25]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[26]  Benoît Carrier,et al.  Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model , 2012 .

[27]  A. Needleman,et al.  A cohesive segments method for the simulation of crack growth , 2003 .

[28]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[29]  George C. Howard,et al.  Optimum Fluid Characteristics for Fracture Extension , 1957 .

[30]  Pieter A. Vermeer,et al.  An accuracy condition for consolidation by finite elements , 1981 .

[31]  Thomas J. Boone,et al.  A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .

[32]  Bernhard A. Schrefler,et al.  Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials , 2007 .

[33]  de R René Borst,et al.  Two-Dimensional Mode I Crack Propagation in Saturated Ionized Porous Media Using Partition of Unity Finite Elements , 2013 .

[34]  Josep María Segura Serra,et al.  Coupled hm analysis using zero-thickness interface elements with double nodes , 2007 .

[35]  Bernhard A. Schrefler,et al.  A method for 3-D hydraulic fracturing simulation , 2012, International Journal of Fracture.

[36]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[37]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[38]  Ignacio Carol,et al.  Coupled HM analysis using zero‐thickness interface elements with double nodes. Part I: Theoretical model , 2008 .

[39]  A. Khoei,et al.  Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method , 2013 .

[40]  A. Needleman,et al.  The simulation of dynamic crack propagation using the cohesive segments method , 2008 .

[41]  R. P. Nordgren,et al.  Propagation of a Vertical Hydraulic Fracture , 1972 .

[42]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .